On cumulative belief entropy

Author(s):  
Huizi Cui ◽  
Bingyi Kang
Keyword(s):  
Author(s):  
Moise Digrais Mambe ◽  
Tchimou N’Takp´e ◽  
Nogbou Georges ◽  
Souleymane Oumtanaga

Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 993 ◽  
Author(s):  
Bin Yang ◽  
Dingyi Gan ◽  
Yongchuan Tang ◽  
Yan Lei

Quantifying uncertainty is a hot topic for uncertain information processing in the framework of evidence theory, but there is limited research on belief entropy in the open world assumption. In this paper, an uncertainty measurement method that is based on Deng entropy, named Open Deng entropy (ODE), is proposed. In the open world assumption, the frame of discernment (FOD) may be incomplete, and ODE can reasonably and effectively quantify uncertain incomplete information. On the basis of Deng entropy, the ODE adopts the mass value of the empty set, the cardinality of FOD, and the natural constant e to construct a new uncertainty factor for modeling the uncertainty in the FOD. Numerical example shows that, in the closed world assumption, ODE can be degenerated to Deng entropy. An ODE-based information fusion method for sensor data fusion is proposed in uncertain environments. By applying it to the sensor data fusion experiment, the rationality and effectiveness of ODE and its application in uncertain information fusion are verified.


Entropy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 163 ◽  
Author(s):  
Qian Pan ◽  
Deyun Zhou ◽  
Yongchuan Tang ◽  
Xiaoyang Li ◽  
Jichuan Huang

Dempster-Shafer evidence theory (DST) has shown its great advantages to tackle uncertainty in a wide variety of applications. However, how to quantify the information-based uncertainty of basic probability assignment (BPA) with belief entropy in DST framework is still an open issue. The main work of this study is to define a new belief entropy for measuring uncertainty of BPA. The proposed belief entropy has two components. The first component is based on the summation of the probability mass function (PMF) of single events contained in each BPA, which are obtained using plausibility transformation. The second component is the same as the weighted Hartley entropy. The two components could effectively measure the discord uncertainty and non-specificity uncertainty found in DST framework, respectively. The proposed belief entropy is proved to satisfy the majority of the desired properties for an uncertainty measure in DST framework. In addition, when BPA is probability distribution, the proposed method could degrade to Shannon entropy. The feasibility and superiority of the new belief entropy is verified according to the results of numerical experiments.


Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 487 ◽  
Author(s):  
Miao Qin ◽  
Yongchuan Tang ◽  
Junhao Wen

Dempster–Shafer evidence theory (DS theory) has some superiorities in uncertain information processing for a large variety of applications. However, the problem of how to quantify the uncertainty of basic probability assignment (BPA) in DS theory framework remain unresolved. The goal of this paper is to define a new belief entropy for measuring uncertainty of BPA with desirable properties. The new entropy can be helpful for uncertainty management in practical applications such as decision making. The proposed uncertainty measure has two components. The first component is an improved version of Dubois–Prade entropy, which aims to capture the non-specificity portion of uncertainty with a consideration of the element number in frame of discernment (FOD). The second component is adopted from Nguyen entropy, which captures conflict in BPA. We prove that the proposed entropy satisfies some desired properties proposed in the literature. In addition, the proposed entropy can be reduced to Shannon entropy if the BPA is a probability distribution. Numerical examples are presented to show the efficiency and superiority of the proposed measure as well as an application in decision making.


2019 ◽  
Vol 14 (3) ◽  
pp. 329-343 ◽  
Author(s):  
Yukun Dong ◽  
Jiantao Zhang ◽  
Zhen Li ◽  
Yong Hu ◽  
Yong Deng

Although evidence theory has been applied in sensor data fusion, it will have unreasonable results when handling highly conflicting sensor reports. To address the issue, an improved fusing method with evidence distance and belief entropy is proposed. Generally, the goal is to obtain the appropriate weights assigning to different reports. Specifically, the distribution difference between two sensor reports is measured by belief entropy. The diversity degree is presented by the combination of evidence distance and the distribution difference. Then, the weight of each sensor report is determined based on the proposed diversity degree. Finally, we can use Dempster combination rule to make the decision. A real application in fault diagnosis and an example show the efficiency of the proposed method. Compared with the existing methods, the method not only has a better performance of convergence, but also less uncertainty.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 57505-57516 ◽  
Author(s):  
Hangyu Yan ◽  
Yong Deng

Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 495 ◽  
Author(s):  
Ying Zhou ◽  
Yongchuan Tang ◽  
Xiaozhe Zhao

Uncertain information exists in each procedure of an air combat situation assessment. To address this issue, this paper proposes an improved method to address the uncertain information fusion of air combat situation assessment in the Dempster–Shafer evidence theory (DST) framework. A better fusion result regarding the prediction of military intention can be helpful for decision-making in an air combat situation. To obtain a more accurate fusion result of situation assessment, an improved belief entropy (IBE) is applied to preprocess the uncertainty of situation assessment information. Data fusion of assessment information after preprocessing will be based on the classical Dempster’s rule of combination. The illustrative example result validates the rationality and the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document