Photocatalysis of sulfones for the utilization of the oxidized sulfur compounds by oxidative desulfurization of fuel oil

Author(s):  
Jianghua Qiu ◽  
Yuqin Zhang ◽  
Guanghui Wang ◽  
Danlin Zeng ◽  
Bencai Lu ◽  
...  
Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1050
Author(s):  
Sarrthesvaarni Rajasuriyan ◽  
Hayyiratul Fatimah Mohd Zaid ◽  
Mohd Faridzuan Majid ◽  
Raihan Mahirah Ramli ◽  
Khairulazhar Jumbri ◽  
...  

The biggest challenge faced in oil refineries is the removal of sulfur compounds in fuel oil. The sulfur compounds which are found in fuel oil such as gasoline and diesel, react with oxygen in the atmosphere to produce sulfur oxide (SOx) gases when combusted. These sulfur compounds produced from the reaction with oxygen in the atmosphere may result in various health problems and environmental effects. Hydrodesulfurization (HDS) is the conventional process used to remove sulfur compounds from fuel oil. However, the high operating conditions required for this process and its inefficiency in removing the organosulfur compounds turn to be the major drawbacks of this system. Researchers have also studied several alternatives to remove sulfur from fuel oil. The use of ionic liquids (ILs) has also drawn the interest of researchers to incorporate them in the desulfurization process. The environmental effects resulting from the use of these ILs can be eliminated using eutectic-based ionic liquids (EILs), which are known as greener solvents. In this research, a combination of extractive desulfurization (EDS) and oxidative desulfurization (ODS) using a photocatalyst and EIL was studied. The photocatalyst used is a pre-reported catalyst, Cu-Fe/TiO2 and the EIL were synthesized by mixing choline chloride (ChCl) with organic acids. The acids used for the EILs were propionic acid (PA) and p-toluenesulfonic acid (TSA). The EILs synthesized were characterized using thermogravimetry analyser (TGA) differential scanning calorimetry (DSC) analysis to determine the physical properties of the EILs. Based on the TGA analysis, ChCl (1): PA (3) obtained the highest thermal stability whereas, as for the DSC analysis, all synthesized EILs have a lower melting point than its pure component. Further evaluation on the best EIL for the desulfurization process was carried out in a photo-reactor under UV light in the presence of Cu-Fe/TiO2 photocatalyst and hydrogen peroxide (H2O2). Once the oxidation and extraction process were completed, the oil phase of the mixture was analyzed using high performance liquid chromatography (HPLC) to measure the sulfur removal efficiency. In terms of the desulfurization efficiency, the EIL of ChCl (1): TSA (2) showed a removal efficiency of about 99.07%.


Fuel ◽  
2021 ◽  
Vol 305 ◽  
pp. 121612
Author(s):  
Jiyuan Fan ◽  
Aiping Chen ◽  
Saumitra Saxena ◽  
Sundaramurthy Vedachalam ◽  
Ajay K. Dalai ◽  
...  

ChemCatChem ◽  
2010 ◽  
Vol 2 (4) ◽  
pp. 459-466 ◽  
Author(s):  
Guohua Gao ◽  
Shifu Cheng ◽  
Ying An ◽  
Xiaojuan Si ◽  
Xianlei Fu ◽  
...  

2015 ◽  
Vol 17 (2) ◽  
pp. 119 ◽  
Author(s):  
Z.R. Ismagilov ◽  
M.A. Kerzhentsev ◽  
S.A. Yashnik ◽  
S.R. Khairulin ◽  
A.V. Salnikov ◽  
...  

<p>An effective gas-phase oxidative desulfurization (ODS) process was proposed. The process was studied in a laboratory reactor with a proprietary catalyst at 300-400 ºС and ambient pressure with model fuels represented by thiophene, dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (DMDBT) dissolved in octane, isooctane or toluene. The reactivity of different sulfur containing molecules in ODS was shown to increase in the sequence: thiophene &lt; DBT &lt; DMDBT. The main sulfur containing product of oxidation of these compounds was SO<sub>2</sub>. During the gas-phase ODS both processes of sulfur species oxidation and processes of their adsorption were observed and studied. Based on the conducted studies, different ODS process designs comprising its integration with adsorption and regeneration processes and with conventional hydrodesulfurization (HDS) process were proposed. One scheme is based on alternating regimes of ODS and catalyst regeneration in two reactors: sulfur is removed from organic feedstock by oxidation and adsorption in one reactor while simultaneous regeneration of the catalyst that has accumulated sulfur  compounds takes place in another reactor. Two other schemes are based on joint use of ODS and HDS. The conventional HDS process is most effective for removal of low-boiling sulfur containing compounds reactive with respect to hydrogen, while removal of refractory sulfur compounds, such as DMDBT is more easily achieved by gas phase ODS. Thus the combination of these processes is expected to be most efficient for deep desulfurization of diesel fuel.</p>


2014 ◽  
Vol 636 ◽  
pp. 93-96
Author(s):  
Ming Zhang ◽  
Wen Shuai Zhu ◽  
Meng Li ◽  
Yan An Li ◽  
Suhang Xun ◽  
...  

Tungsten-containing functional mesoporousW-SiO2 have been successfully synthesized by an one-pot and facile room-temperature procedure. These materials presented a high dispersion of tungsten species and excellent catalytic activity on the removal of sulfur compounds without any organic solvents as extractants. The catalytic performance on sulfur compounds was investigated in detail. After recycling for 8 times, the removal of the oxidation desulfurization system could still reach 92.0%.


2011 ◽  
Vol 396-398 ◽  
pp. 1283-1286
Author(s):  
Jian Peng Zhu ◽  
Chun Hu Li ◽  
Jia Ling Chen ◽  
Ying Wei Luo

Abstract. Investigation of polymer resin as catalyst in the oxidative desulfurization (ODS) process has revealed that the method can be applied to make a relative high removal of sulfur compounds. The reaction conditions, including temperature, amount of oxidant and reaction time were studied. The best result occurs under mild conditions with respect to room temperature and atmospheric pressure, to remove 75.54% of the totle sulfur content in the presence of H2O2 with an O/S molar ratio of 17. Possible mechanism is also disscussed.


Sign in / Sign up

Export Citation Format

Share Document