A novel high resolution parallel spectral estimation method for narrow-band signals

Author(s):  
W. Liu ◽  
R. Doraiswami
2020 ◽  
Vol 45 (2) ◽  
pp. 489-499 ◽  
Author(s):  
Wei Guo ◽  
Shengchun Piao ◽  
T. C. Yang ◽  
Junyuan Guo ◽  
Kashif Iqbal

2019 ◽  
Vol 283 ◽  
pp. 07002 ◽  
Author(s):  
Hangfang Zhao ◽  
Lin Gui

Spectral Analysis is one of the most important methods in signal processing. In practical application, it is critical to discuss the power spectral density estimation of finite data sampled from some stationary time series. A spectral estimator is expected to have good statistical properties such as consistency, high resolution and small variance. For one spectral estimation method, there exists a trade-off between high resolution and small variance. The paper provides a comparison of several popular spectral methods from both theoretical properties and practical applications. We first address several basic nonparametric methods, whose statistical characters are analysed. Then we explain the connections and differences between temporal windowing and lag windowing. Thereafter, the confidence intervals of both windows are given and used to evaluate the estimated results. Besides, several different parametric estimation methods of autoregressive time series are compared, and whose properties and effects are also introduced. Building on our understanding of these studies, we then apply parametric and nonparametric spectral estimation methods on the data of ocean surface wave height.


Author(s):  
Shida Tan ◽  
Richard H. Livengood ◽  
Dane Scott ◽  
Roy Hallstein ◽  
Pat Pardy ◽  
...  

Abstract High resolution optical imaging is critical in assisting backside circuit edit (CE) and optical probing navigation. In this paper, we demonstrated improved optical image quality using VIS-NIR narrow band light emitting diode (LED) illumination in various FIB and optical probing platforms. The proof of concept was demonstrated with both common non-contact air gap lenses and solid immersion lenses (SIL).


2021 ◽  
Vol 13 (15) ◽  
pp. 2862
Author(s):  
Yakun Xie ◽  
Dejun Feng ◽  
Sifan Xiong ◽  
Jun Zhu ◽  
Yangge Liu

Accurately building height estimation from remote sensing imagery is an important and challenging task. However, the existing shadow-based building height estimation methods have large errors due to the complex environment in remote sensing imagery. In this paper, we propose a multi-scene building height estimation method based on shadow in high resolution imagery. First, the shadow of building is classified and described by analyzing the features of building shadow in remote sensing imagery. Second, a variety of shadow-based building height estimation models is established in different scenes. In addition, a method of shadow regularization extraction is proposed, which can solve the problem of mutual adhesion shadows in dense building areas effectively. Finally, we propose a method for shadow length calculation combines with the fish net and the pauta criterion, which means that the large error caused by the complex shape of building shadow can be avoided. Multi-scene areas are selected for experimental analysis to prove the validity of our method. The experiment results show that the accuracy rate is as high as 96% within 2 m of absolute error of our method. In addition, we compared our proposed approach with the existing methods, and the results show that the absolute error of our method are reduced by 1.24 m-3.76 m, which can achieve high-precision estimation of building height.


2021 ◽  
Vol 13 (12) ◽  
pp. 2326
Author(s):  
Xiaoyong Li ◽  
Xueru Bai ◽  
Feng Zhou

A deep-learning architecture, dubbed as the 2D-ADMM-Net (2D-ADN), is proposed in this article. It provides effective high-resolution 2D inverse synthetic aperture radar (ISAR) imaging under scenarios of low SNRs and incomplete data, by combining model-based sparse reconstruction and data-driven deep learning. Firstly, mapping from ISAR images to their corresponding echoes in the wavenumber domain is derived. Then, a 2D alternating direction method of multipliers (ADMM) is unrolled and generalized to a deep network, where all adjustable parameters in the reconstruction layers, nonlinear transform layers, and multiplier update layers are learned by an end-to-end training through back-propagation. Since the optimal parameters of each layer are learned separately, 2D-ADN exhibits more representation flexibility and preferable reconstruction performance than model-driven methods. Simultaneously, it is able to better facilitate ISAR imaging with limited training samples than data-driven methods owing to its simple structure and small number of adjustable parameters. Additionally, benefiting from the good performance of 2D-ADN, a random phase error estimation method is proposed, through which well-focused imaging can be acquired. It is demonstrated by experiments that although trained by only a few simulated images, the 2D-ADN shows good adaptability to measured data and favorable imaging results with a clear background can be obtained in a short time.


Sign in / Sign up

Export Citation Format

Share Document