Robust controller design for Maglev transport vehicles with a guide-effective electromagnetic suspension system

Author(s):  
M. Morishita
Author(s):  
H. Porumamilla ◽  
A. G. Kelkar

This paper presents robust controller design for an active automobile suspension system using an interative LQG design technique. The main objective is to design an active feedback control for an automobile suspension system to ensure the ride comfort for passengers in the presence of unknown road disturbances. The control system designed is shown to be robust to uncertainties and parametric variations. The resulting interative LQG-based control design is shown to achieve a significant improvement in the performance, while maintaining a desired level of closed-loop stability that is robust to plant uncertainties and parametric variations. The controller design is also compared to some other active suspension designs published in the literature.


2014 ◽  
Vol 39 (8) ◽  
pp. 1374-1380
Author(s):  
Bin LIU ◽  
Jiu-Qiang SUN ◽  
Zhi-Qiang ZHAI ◽  
Zhuo LI ◽  
Chang-Hong WANG

Author(s):  
J. Flgueroa ◽  
A. C. Desages ◽  
A. Palazoglu ◽  
J. A. Romagnoli

Sign in / Sign up

Export Citation Format

Share Document