Discretization of a non-linear, exponentially stabilizing control law using an L/sub p/-gain approach

Author(s):  
G. Herrmann ◽  
S.K. Spurgeon ◽  
C. Edwards
Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 422 ◽  
Author(s):  
Grienggrai Rajchakit ◽  
Pharunyou Chanthorn ◽  
Pramet Kaewmesri ◽  
Ramalingam Sriraman ◽  
Chee Peng Lim

This paper studies the global Mittag–Leffler stability and stabilization analysis of fractional-order quaternion-valued memristive neural networks (FOQVMNNs). The state feedback stabilizing control law is designed in order to stabilize the considered problem. Based on the non-commutativity of quaternion multiplication, the original fractional-order quaternion-valued systems is divided into four fractional-order real-valued systems. By using the method of Lyapunov fractional-order derivative, fractional-order differential inclusions, set-valued maps, several global Mittag–Leffler stability and stabilization conditions of considered FOQVMNNs are established. Two numerical examples are provided to illustrate the usefulness of our analytical results.


1994 ◽  
Vol 39 (11) ◽  
pp. 2354-2357 ◽  
Author(s):  
F. Dufour ◽  
P. Bertrand

Author(s):  
X Lin-Shi ◽  
J-M Retif ◽  
B Allard ◽  
H Morel

The bond graph technique is applied to model a boost converter in order to derive an averaged model. The obtained averaged model is non-ideal as it takes into account most of the converter non-linearities introduced by power semiconductor devices. An ideal averaged model of the converter can be deduced easily for computing a non-linear control law in a real-time control context. The current-mode control of the boost converter is considered. The zero dynamics are studied by both classical theory and the bond graph approach. A modified version of a conventional nonlinear control law is proposed in order to improve the dynamic behaviour and to reduce the sensitivity to control model errors. The non-ideal averaged model is used firstly for simulation analyses of the proposed control law and then for comparison with experimental results.


2016 ◽  
Vol 39 (8) ◽  
pp. 1169-1181 ◽  
Author(s):  
Yuefei Wu ◽  
Jianyong Yao

In this paper, an adaptive robust output feedback control approach is proposed for a class of uncertain non-linear systems with unknown input dead-zone non-linearity, unknown failures and unknown bounded disturbances. By constructing the dead-zone inverse and applying the backstepping recursive design technique, a robust adaptive backstepping controller is proposed, in which adaptive control law is synthesized to handle parametric uncertainties and a novel robust control law to attenuate disturbances. The robust output feedback control law is developed by integrating a switching function σ algorithm at each step of the backstepping design procedure. In addition, K-filters are designed to estimate the unmeasured states and neural networks are employed to approximate the unknown non-linear functions. By ensuring boundedness of the barrier Lyapunov function, the major feature of the proposed controller is that it can theoretically guarantee asymptotic output tracking performance, in spite of the presence of unknown input dead-zone non-linearity, various actuator failures and unknown bounded disturbances via Lyapunov stability analysis. The effectiveness of the proposed approach is illustrated by the simulation examples.


2011 ◽  
Vol 128-129 ◽  
pp. 979-984
Author(s):  
Shao Bo Ni ◽  
Wei Jun Hu ◽  
Song Xiong

A de-couple control method with information feedback from other control channel and a method with double control loops were present for the hypersonic vehicle with non-linear, couple and lateral maneuver. The whole controller was divided into two parts: the computation of actuator which deal with control couple and design of control law which solve the problem of movement and aerodynamic couple. The time-varying controller parameter method and robust control law were present to solve the problem of quick time-varying model parameter and non-linear. Finally these two methods were analyzed contrastively; the simulation result show that these two methods present above can achieve the quick dynamic and high precise track of command. But the latter was better.


1990 ◽  
Vol 51 (3) ◽  
pp. 553-566 ◽  
Author(s):  
S. NICOSIA ◽  
P. TOMEI ◽  
A. TORNAMBÈ

2004 ◽  
Vol 108 (1084) ◽  
pp. 319-329
Author(s):  
A. J. Steer

Abstract Modern civil transport aircraft utilise increasingly complex command and stability augmentation systems to restore stability, optimise aerodynamic performance and provide the pilot with the optimum handling qualities. Provided it has sufficient control power a second generation fly-by-wire supersonic transport aircraft should be capable of exhibiting similarly desirable low-speed handling qualities. However, successful flight control law design requires identification of the ideal command response type for a particular phase of flight, a set of valid handling quality design criteria and piloted simulation evaluation tasks and metrics. A non-linear mathematical model of the European supersonic transport aircraft has been synthesized on the final approach to land. Specific handling quality design criteria have been proposed to enable the non-linear dynamic inversion flight control laws to be designed, with piloted simulation used for validation. A pitch rate command system, with dynamics matched to the aircraft’s flight path response, will consistently provide Level 1 handling qualities. Nevertheless, pre-filtering the pilot’s input to provide a second order pitch rate response, using the author’s suggested revised constraints on the control anticipation parameter will generate the best handling qualities during the terminal phase of flight. The resulting pre-filter can be easily applied to non-linear dynamic inversion inner loop controllers and has simple and flight proven sensor requirements.


Author(s):  
Jiaming Zhang ◽  
Qing Li ◽  
Nong Cheng ◽  
Bin Liang

A novel adaptive backstepping control scheme based on invariant manifolds for unmanned aerial vehicles in the presence of some uncertainties in the aerodynamic coefficients is presented in this article. This scheme is used for command tracking of the angle of attack, the sideslip angle, and the bank angle of the aircraft. The control law has a modular structure, which consists of a control module and a recently developed non-linear estimator. The estimator is based on invariant manifolds, which allows for prescribed dynamics to be assigned to the estimation error. The adaptive backstepping control law combined with the estimator covers the entire flight envelope and does not require accurate aerodynamic parameters. The stability of the whole closed-loop system is analyzed using the Lyapunov stability theory. The full six-degree-of-freedom non-linear model of a small unmanned aerial vehicle is used to demonstrate the effectiveness of the proposed control law. The numerical simulation result shows that this method can yield satisfying command tracking despite some unknown aerodynamic parameters.


Sign in / Sign up

Export Citation Format

Share Document