Fault tolerant plug and play vibration control in building structures

Author(s):  
Eshag Larbah ◽  
Ron J. Patton
2017 ◽  
Vol 24 (11) ◽  
pp. 2261-2273 ◽  
Author(s):  
Eckart Uhlmann ◽  
Shashwat Kushwaha ◽  
Jan Mewis ◽  
Sebastian Richarz

In this paper, a technique for automatic robust control design and synthesis for plug and play active vibration control module is presented. Robust control theory offers the uncertainty analysis and graphical manipulation of the frequency response as well as analytical solution approach. The prior knowledge of the plant model imposes limitations on the fast and effective implementation of the robust control. Moreover, the design of the weight functions for the robust control is usually a trial and error process. The plant identification and subsequent control design becomes even more tedious for modular devices with plug and play capability. In the present paper, the plant model is identified by using polyreference least square complex frequency estimator and an innovative automatic pole clustering algorithm. The [Formula: see text] loop shaping robust control is designed, where the parameters of the weight functions are optimised using genetic algorithm. An experimental evaluation is also presented on a prototype modular structure.


2015 ◽  
Vol 21 (8) ◽  
pp. 967-976 ◽  
Author(s):  
Nengmou Wang ◽  
Hojjat Adeli

A robust filtered sliding mode control (SMC) approach is presented for vibration control of wind-excited highrise building structures. Rather than using a Lyapunov-function based control design, an alternative way is provided to find the control force based on the equivalent control force principle to obtain the control force. A low pass filter is properly selected to remove the high-frequency components of the control force while retaining the structural stability. The performance of the proposed filtered SMC is evaluated by application to a wind-excited 76-story building benchmark problem equipped with an active tuned mass damper (ATMD) on the roof. Due to the elimination of high-frequency part of the control force, the structure, sensors, actuators, and dampers are all less excited, and consequently their response is reduced compared with the unfiltered SMC approach. In addition, the required control forces are reduced which means a reduction in the size of actuators, thus making their implementation more practical. It is shown the proposed method is more robust to structural stiffness uncertainties compared with the linear quadratic Gaussian (LQG) algorithm and another implementation of SMC.


Sign in / Sign up

Export Citation Format

Share Document