The ACTS software and its supervisory control framework

Author(s):  
Marian V. Iordache ◽  
Panos J. Antsaklis
Author(s):  
Ivan Kolesov ◽  
Peter Karasev ◽  
Grant Muller ◽  
Karol Chudy ◽  
John Xerogeanes ◽  
...  

Activity of the plant requires a great deal of work and human asset and requires a ton of diligent work and persistence as the individual needs to take note of every single an incentive at various occasions by taking readings physically. With the advancement of Industrial Automation, fluid level control framework has been generally utilized in different fields. In this paper, in light of PLC a control framework is set up by PID calculation and this control framework can alter two diverse fluid levels consequently. On the off chance that there are two distinct kinds of fluids with various densities in an equivalent tank and so as to isolate those two fluids, Level control framework dependent on SCADA and PLC is actualized. This framework satisfies splendidly the need of various fluid level control framework in industry, and it brings advantageous and exact for controlling. The proposed framework gives the fluid Level control, with the assistance of Programmable Logic Controllesr (PLCs), and Supervisory Control and Data Acquisition (SCADA).


2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Zhanhong Jiang ◽  
Venkatesh Chinde ◽  
Adam Kohl ◽  
Atul G. Kelkar ◽  
Soumik Sarkar

Abstract Energy consumption in commercial buildings is significantly affected by the performance of heating, ventilation, and air-conditioning (HVAC) systems, which are traditionally operated using centralized controllers. HVAC control requires adjusting multiple setpoints such as chilled water temperatures and supply air temperature (SAT). Supervisory control framework in a distributed setting enables optimal HVAC operation and provides scalable solutions for optimizing energy across several scales from homes to regional areas. This paper proposes a distributed optimization framework for achieving energy efficiency in large-scale building energy systems. It is highly desirable to have building management systems that are scalable, robust, flexible, and are low cost. For addressing the scalability and flexibility, a modular problem formulation is established that decouples the distributed optimization level from local thermal zone modeling level. We leverage a recently developed generalized gossip algorithm for robust distributed optimization. The supervisory controller aims at minimizing the energy input considering occupant comfort. For validating the proposed scheme, a numerical case study based on a physical testbed in the Iowa Energy Center is presented. We show that the distributed optimization methodology outperforms the typical baseline strategy, which is a rule-based controller to set a constant supply air temperature. This paper also incorporates a software architecture based on the volttron platform, developed by the Pacific Northwest National Laboratory (PNNL), for practical implementation of the proposed framework via the BACnet system. The experimental results show that the supervisory control framework proposed in this paper can save energy by approximately 11%.


2013 ◽  
Vol 284-287 ◽  
pp. 3211-3215 ◽  
Author(s):  
Shu Chu Tung ◽  
Wu Jeng Li ◽  
Shih Miao Huang

This paper designs a web-based Android supervisory control system. Android controller is used as a local controller to fit into a supervisory control framework. The framework includes a central server, a SMS device attached to the server, multiple local controllers, a remote control program and a ladder logic computer-aided design program. The Android controller contains an Android mobile phone, a Wi-Fi wireless access point, a switch hut (or NAT) and multiple data acquisition modules. The Android mobile phone enters TCP/IP LAN through the Wi-Fi access point. The data acquisition modules with TCP/IP interface are plugged into the LAN, and read/written by the Android mobile phone with Modbus TCP. The Android controller communicates with supervisory server with a specific m2m protocol which is based on http protocol. Once an Android controller is connected to the supervisory control framework, it can be monitored and controlled remotely with any browser. A web-based home security system is constructed to demonstrate the usage of the web-based Android supervisory control system. The control laws for the home security system are partially implemented with ladder logics designed with a computer-aided program in the framework. With a supervisory server serving multiple Android controllers, Cloud home security service is formed.


2012 ◽  
Vol 8 (1) ◽  
pp. 274-278 ◽  
Author(s):  
Wu-Jeng Li ◽  
Shu-Chu Tung

Sign in / Sign up

Export Citation Format

Share Document