scholarly journals Asymptotic Output-Feedback Stabilization of Linear Evolution Equations with Uncertain Inputs via Equivalent Control Method

Author(s):  
Jonathan P. Epperlein ◽  
Orest Iftime ◽  
Sergiy Zhuk ◽  
Andrey Polyakov
2006 ◽  
Vol 11 (2) ◽  
pp. 137-148 ◽  
Author(s):  
A. Benabdallah ◽  
M. A. Hammami

In this paper, we address the problem of output feedback stabilization for a class of uncertain dynamical systems. An asymptotically stabilizing controller is proposed under the assumption that the nominal system is absolutely stable.


Author(s):  
D. A. SMITH ◽  
W. Y. TOH

The classical half-line Robin problem for the heat equation may be solved via a spatial Fourier transform method. In this work, we study the problem in which the static Robin condition $$bq(0,t) + {q_x}(0,t) = 0$$ is replaced with a dynamic Robin condition; $$b = b(t)$$ is allowed to vary in time. Applications include convective heating by a corrosive liquid. We present a solution representation and justify its validity, via an extension of the Fokas transform method. We show how to reduce the problem to a variable coefficient fractional linear ordinary differential equation for the Dirichlet boundary value. We implement the fractional Frobenius method to solve this equation and justify that the error in the approximate solution of the original problem converges appropriately. We also demonstrate an argument for existence and unicity of solutions to the original dynamic Robin problem for the heat equation. Finally, we extend these results to linear evolution equations of arbitrary spatial order on the half-line, with arbitrary linear dynamic boundary conditions.


2017 ◽  
Vol 40 (7) ◽  
pp. 2408-2415 ◽  
Author(s):  
Liang Liu ◽  
Shengyuan Xu ◽  
Xuejun Xie ◽  
Bing Xiao

Based on stochastic time-delay system stability criterion and a homogeneous domination approach, the output-feedback stabilization problem for a class of more general stochastic upper-triangular systems with state and input time-delays has been solved in this paper. Firstly, the initial system is changed into an equivalent one with a designed scalar by introducing a set of coordinate transformations. After that, by designing an implementable homogeneous reduced-order observer, and tactfully selecting a suitable Lyapunov–Krasoviskii functional and a low gain scale, a delay-independent output-feedback controller is explicitly constructed. Finally, the globally asymptotically stability in probability of the closed-loop system is ensured by rigorous proof. The simulation results demonstrate the efficiency of the proposed design scheme.


Automatica ◽  
2021 ◽  
Vol 125 ◽  
pp. 109436
Author(s):  
Khadidja Chaib-Draa ◽  
Ali Zemouche ◽  
Fazia Bedouhene ◽  
Rajesh Rajamani ◽  
Yan Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document