Surface conductivity measurements on large polymer samples

Author(s):  
M.J. Given ◽  
R.A. Fouracre ◽  
I.V. Timoshkin ◽  
S.J. Macgregor ◽  
J.M. Lehr
2015 ◽  
Vol 27 (19) ◽  
pp. 194118 ◽  
Author(s):  
Oriane Bonhomme ◽  
Anne Mounier ◽  
Gilles Simon ◽  
Anne-Laure Biance

1953 ◽  
Vol 6 (3) ◽  
pp. 278 ◽  
Author(s):  
DJ O'Connor ◽  
AS Buchanan

Simultaneous ζ-potential and surface conductivity measurements have been made on three samples of cassiterite (SnO2) in water, in solutions of HCl, alkalis, inorganic salts, and the flotation collector reagent sodium cetyl sulphate. It is probable that the intrinsic surface charge of cassiterite in water is negative and that it is due to surface ionization as a very weak acid. Two of the solids possessed a negative surface whilst the positive charge of the third seemed to be due to ionization of a strongly basic impurity. Those samples having a negative charge showed little reaction with sodium cetyl sulphate alone, but appreciable adsorption of cetyl sulphate ion took place in acid solution. On the other hand, the sample with the positive surface reacted with cetyl sulphate ion even in the absence of acid. In all cases adsorption of cetyl sulphate was completely reversible.


2000 ◽  
Vol 07 (05n06) ◽  
pp. 533-537 ◽  
Author(s):  
ICHIRO SHIRAKI ◽  
TADAAKI NAGAO ◽  
SHUJI HASEGAWA ◽  
CHRISTIAN L. PETERSEN ◽  
PETER BØGGILD ◽  
...  

For in-situ measurements of surface conductivity in ultrahigh vacuum (UHV), we have installed micro-four-point probes (probe spacings down to 4 μm) in a UHV scanning electron microscope (SEM) combined with scanning reflection–high-energy electron diffraction (RHEED). With the aid of piezoactuators for precise positioning of the probes, local conductivity of selected surface domains of well-defined superstructures could be measured during SEM and RHEED observations. It was found that the surface sensitivity of the conductivity measurements was enhanced by reducing the probe spacing, enabling the unambiguous detection of surface-state conductivity and the influence of surface defects on the electrical conduction.


1984 ◽  
Vol 55 (12) ◽  
pp. 4280-4283 ◽  
Author(s):  
V. Dolgopolov ◽  
C. Mazuré ◽  
A. Zrenner ◽  
F. Koch

2000 ◽  
Vol 663 ◽  
Author(s):  
Y. Ohlsson ◽  
I. Neretnieks

ABSTRACTMatrix diffusion laboratory experiments in dense porous rock are generally very time consuming and one is limited to rather short diffusion lengths, as well as to a small amount of samples. The large heterogeneity of rock, on the other hand, demands a large quantity of samples that are large enough to exclude effects from e.g. increases in interconnected porosity compared to that of the pristine rock.Electrical conductivity measurements are very fast and larger samples can be used than is practical in ordinary diffusion experiments. The effective diffusivity of a non-charged molecule is readily evaluated from the measurements, and influences from surface conductivity on diffusion of cations can be studied.In this study traditional through diffusion experiments as well as electrical conductivity measurements are carried out on the same rock samples. The formation factor is determined by both methods, and the methods are compared and discussed.The surface conductivity is studied by exchanging the surface sites with Na+, Sr2+ and Cs+. After leaching out the free pore ions the surface conductivity is measured.With the electrical conductivity method the formation factor is determined directly, whereas it has to be calculated using the bulk liquid diffusion coefficient in the diffusion experiments. This causes some uncertainties in the comparison between the experiments. In estimating the bulk liquid diffusivity, the value for infinitely diluted solutions and in pure water environment is commonly used. The calculated formation factor may therefore be somewhat underestimated.


2013 ◽  
Vol 49 (6) ◽  
pp. 594-598 ◽  
Author(s):  
Yu. M. Vol’fkovich ◽  
A. A. Mikhalin ◽  
A. Yu. Rychagov

Sign in / Sign up

Export Citation Format

Share Document