An efficient model nonlinear predictive control algorithm based on stair-like control strategy

Author(s):  
Zheng Tao ◽  
Wu Gang ◽  
He Defeng ◽  
Yue Dazhi
2013 ◽  
Vol 433-435 ◽  
pp. 1091-1098
Author(s):  
Wei Bo Yu ◽  
Cui Yuan Feng ◽  
Ting Ting Yang ◽  
Hong Jun Li

The air precooling system heat exchange process is a complex control system with features such as: nonlinear, lag and random interference. So choose Generalized Predictive Control Algorithm that has low model dependence, good robustness and control effect, as well as easy to implement. But due to the large amount of calculation of traditional generalized predictive control and can't juggle quickness and overshoot problem, an improved generalized predictive control algorithm is proposed, then carry out the MATLAB simulation, the experimental results show that the algorithm can not only greatly reduce the amount of computation, but also can restrain the overshoot and its rapidity.


2007 ◽  
Vol 40 (12) ◽  
pp. 216-221 ◽  
Author(s):  
Smaranda Cristea ◽  
César de Prada

Author(s):  
C. H. Fontes ◽  
M. J. Mendes

A nonlinear model predictive control (NMPC) is applied to a slurry polymerization stirred tank reactor for the production of high-density polyethylene. Its performance is examined to reach the required mean molecular weight and comonomer composition, together with the temperature setpoint. A complete phenomenological model including the microscale, the mesoscale and the macroscale levels was developed to represent the plant. The control algorithm comprises a neural dynamic model that uses a neural network structure with a feedforward topology. The algorithm implementation considers the optimization problem, the manipulated and controlled variables adopted and presents results for the regulatory and servo problems, including the possibility of dead time and multi-rate sampling in the controlled variables. The simulation results show the high performance of the NMPC algorithm based in a model for one-step ahead prediction only, and, at the same time, attests the strong difficulty to control polymer properties with dead time in their measurements.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2466 ◽  
Author(s):  
Ding ◽  
Zhang ◽  
Lin

In order to ensure deep-water flowline safety, this paper combined the axial temperature distribution model of the submarine pipeline and the distributed parameter circuit model of the skin effect electric heat tracing system; such work is conducive to proving that the heating effect of the skin effect electric heat tracing system depends on the distributed circuit parameters and power frequency of the system. Due to the complexity of the power supply device, the frequency cannot be increased indefinitely. Therefore, for the case that the input of the skin electric heat tracing system is constrained, a generalized predictive control algorithm introducing the input softening factor is proposed, and the constrained generalized predictive control strategy is applied to the electric heating temperature control system of the submarine oil pipeline. Simulation results demonstrated that the control quantity of the skin effect electric heat tracing system is effectively controlled within a constraint range, and also the values of heating power and power frequency are obtained by theoretical calculations rather than empirical estimations. Moreover, compared with the conventional control algorithm, the proposed constrained generalized predictive algorithm unfolds more significant dynamic response and better adaptive adjustment ability, which verifies the feasibility of the proposed control strategy.


Sign in / Sign up

Export Citation Format

Share Document