Energy-efficient tree-based message ferrying routing schemes for wireless sensor networks

Author(s):  
Yi-hua Zhu ◽  
Wan-deng Wu ◽  
Victor C.M. Leung ◽  
Liang-huai Yang
2013 ◽  
Vol 4 (2) ◽  
pp. 261-266 ◽  
Author(s):  
Jahangeer Ali ◽  
Gulshan Kumar ◽  
Dr. Mritunjay Kumar Rai

Sensing the environment without human intervention is carried out with Wireless Sensor Networks. Thus WSNs have gained impetus in every field as applicable to various sensing applications. As the sensor nodes are very minute with limited power, memory and controlling mechanism. Thus it is necessary to implement energy efficient routing in sensor nodes such that network lifetime is enhanced. In this paper, we have discussed various existing energy efficient routing schemes and made comparison on various parameters in literature survey. Finally came to conclusion that there is a need of an energy efficient routing protocol which can further extend network lifetime. We propose an idea in which existing; Enhanced Energy Efficient Protocol with Static Clustering (EEEPSC) is modified by placing a fraction of nodes having more energy than normal nodes in the locations where Base Station is far away. And BS is placed within the area of deployed nodes.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1539
Author(s):  
Qianao Ding ◽  
Rongbo Zhu ◽  
Hao Liu ◽  
Maode Ma

Machine learning (ML) technology has shown its unique advantages in many fields and has excellent performance in many applications, such as image recognition, speech recognition, recommendation systems, and natural language processing. Recently, the applicability of ML in wireless sensor networks (WSNs) has attracted much attention. As resources are limited in WSNs, identifying how to improve resource utilization and achieve power-efficient load balancing is becoming a critical issue in WSNs. Traditional green routing algorithms aim to achieve this by reducing energy consumption and prolonging network lifetime through optimized routing schemes in WSNs. However, there are usually problems such as poor flexibility, a single consideration factor, and a reliance on accurate mathematical models. ML techniques can quickly adapt to environmental changes and integrate multiple factors for routing decisions, which provides new ideas for intelligent energy-efficient routing algorithms in WSNs. In this paper, we survey and propose a theoretical hypothetic model formulation of ML as an effective method for creating a power-efficient green routing model that can overcome the limitations of traditional green routing methods. In addition, the study also provides an overview of past, present, and future progress in green routing schemes in WSNs. The contents of this paper will appeal to a wide range of audiences interested in ML-based WSNs.


Author(s):  
Muneer Bani Yassein ◽  
Yaser Khamayseh ◽  
Ismail Hmeidi ◽  
Ahmed Al-Dubai ◽  
Mohammed Al-Maolegi

Author(s):  
A. Radhika ◽  
D. Haritha

Wireless Sensor Networks, have witnessed significant amount of improvement in research across various areas like Routing, Security, Localization, Deployment and above all Energy Efficiency. Congestion is a problem of  importance in resource constrained Wireless Sensor Networks, especially for large networks, where the traffic loads exceed the available capacity of the resources . Sensor nodes are prone to failure and the misbehaviour of these faulty nodes creates further congestion. The resulting effect is a degradation in network performance, additional computation and increased energy consumption, which in turn decreases network lifetime. Hence, the data packet routing algorithm should consider congestion as one of the parameters, in addition to the role of the faulty nodes and not merely energy efficient protocols .Nowadays, the main central point of attraction is the concept of Swarm Intelligence based techniques integration in WSN.  Swarm Intelligence based Computational Swarm Intelligence Techniques have improvised WSN in terms of efficiency, Performance, robustness and scalability. The main objective of this research paper is to propose congestion aware , energy efficient, routing approach that utilizes Ant Colony Optimization, in which faulty nodes are isolated by means of the concept of trust further we compare the performance of various existing routing protocols like AODV, DSDV and DSR routing protocols, ACO Based Routing Protocol  with Trust Based Congestion aware ACO Based Routing in terms of End to End Delay, Packet Delivery Rate, Routing Overhead, Throughput and Energy Efficiency. Simulation based results and data analysis shows that overall TBC-ACO is 150% more efficient in terms of overall performance as compared to other existing routing protocols for Wireless Sensor Networks.


Sign in / Sign up

Export Citation Format

Share Document