Temperature and humidity monitoring through wireless sensor network using shortest path algorithm

Author(s):  
Pritam Khan ◽  
Arnab Ghosh ◽  
Gargi Konar ◽  
Niladri Chakraborty
2015 ◽  
Vol 771 ◽  
pp. 42-45 ◽  
Author(s):  
Muhammad Miftahul Munir ◽  
Kostan D.F. Mataubenu ◽  
Rahmat Awaludin Salam ◽  
Hamzah Latief ◽  
Khairurrijal

The development of a wireless sensor network system for temperature and humidity monitoring is described. The system is composed of two main parts, namely an end device and a coordinator. The end device consists of an SHT10 sensor, an XBee Pro RF module, an ATMega8535 microcontroller, and a battery. The coordinator consists of an XBee Pro RF module and an SIM900 GSM module. The temperature and humidity data were sent by the end device to the coordinator and they were forwarded to the web server via GPRS communication using the SIM900 GSM module. In order to the data stored in the database can be accessed in real time via the internet, a web server is developed by using CodeIgniter (CI). It was shown that each end device can communicate very well with the coordinator. Moreover, the data are received in accordance with the timing of delivery was given.


2016 ◽  
Vol 16 (11) ◽  
pp. 4631-4637 ◽  
Author(s):  
Juan Cota-Ruiz ◽  
Pablo Rivas-Perea ◽  
Ernesto Sifuentes ◽  
Rafael Gonzalez-Landaeta

2019 ◽  
Vol 75 (9) ◽  
pp. 5930-5945 ◽  
Author(s):  
Guolong Chen ◽  
Zhenghua Xin ◽  
Han Li ◽  
Tonghai Zhu ◽  
Maodi Wang ◽  
...  

2019 ◽  
Vol 4 (2) ◽  
pp. 135-140
Author(s):  
Eko Prayitno ◽  
Desi Amirullah

The purpose of this research is how to make an air condition monitoring system by considering the concentration value of carbon monoxide in Riau Province. The technology used to support monitoring system of carbon monoxide concentration, using Wireless Sensor Network Technology (WSN) and Internet of Things (IoT). One of the WSN concepts to be used is a combination of several sensors, the only sensors used to detect the level of carbonmonoxide concentration include: carbon monoxide, temperature and humidity sensors. Air condition data derived from the sensor in the form of concentration value of carbon monoxide, temperature and humidity of air sent to server connected to network using IoT technology. Based on the test results it can be concluded that the air condition monitoring system using WSN and IoT technology can be applied in realtime, this can be proven with the data shown in the monitoring tool. the detection of a fire source using a sensor can be done by using a distance between a smoke source (hotspot) and a device 90cm. From the observation result there is difference between sensing data without smoke and using smoke, such as temperature has 60C difference, humidity 20 rh and carbon monoxide about 17ppm


2019 ◽  
Vol 13 (2) ◽  
pp. 123-130 ◽  
Author(s):  
Santosh R. Durugkar ◽  
Ramesh C. Poonia ◽  
Radhakrishna B. Naik

Background: India is the land of agriculture. Agriculture and gardening is not only done at a huge level but also at small piece of land, it is a backbone of Indian economy. Small gardens are maintained within the boundary of home. Water consumption in agriculture and gardening is at high level. But due to irregular monsoon and decreased ground water level it is hard to irrigate the farm and gardens. We have referred 03 patents which motivated us to revolutionize the agriculture sector. Objectives: Initial stages our scope is limited to home garden and we have proposed a GUI with which end user can get many things such as pH of the soil, conductivity and TDS of the water, temperature and humidity relationship, effect of temperature and humidity on the moisture, soil analysis, moisture holding capacity of the soil etc. Irrigation plays important role in yielding of any plant. In this proposed system, we have proposed a priority driven based irrigation model that supplies optimum and good quality water to the crops with the help of Wireless Sensor Network. Methods: This proposed model is based on sensing the soil moisture, temperature, humidity and other factor which affect the irrigation and supplies the water according to the priority of the requirement to the plant. It is crop independent system, which can be implemented for basic crops, commercials crops, garden and orchards, as basis for this proposed system is important to immediately irrigate the plant wherever soil moisture level will be less. Smart irrigation is the new trend and we can say thirst now a days and it is the major requirement due to many critical factors such as irregularity of monsoon, less availability of water etc. Even though sufficient water is available still we have to make sure whether it is good to use for better yielding of crops. At the same time temperature, humidity, air flow, soil moisture will play important roles in better crop yielding. Wireless sensor network in which ‘n’ no. of issues need to be discussed for the smooth execution of various tasks. Some challenges have been pointed out through this work and important issues which must be considered. Conclusion: final testing shows how this approach is beneficial to the society. In agriculture and gardening now onwards water consumption will be at low level. At the same time this proposed system shows additional advantages to the end user i.e. quality of water utilization in terms of TDS, Conductivity and pH of the water. Similarly, w.r.t. soil, if due to excess utilization of fertilizers and pesticides pH is changing then also same thing will be noticed by avoiding future losses.


Sign in / Sign up

Export Citation Format

Share Document