Characteristics of Ionic Wind Thruster with Auxiliary Ring Electrode Configuration

Author(s):  
Desheng Zhou ◽  
Qiang Liu ◽  
Jingfeng Tang ◽  
Haoran Zhang
Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 238
Author(s):  
Josef Khun ◽  
Anna Machková ◽  
Petra Kašparová ◽  
Myron Klenivskyi ◽  
Eva Vaňková ◽  
...  

A non-thermal plasma (NTP) is a promising tool against the development of bacterial, viral, and fungal diseases. The recently revealed development of microbial resistance to traditional drugs has increased interest in the use of NTPs. We have studied and compared the physical and microbicidal properties of two types of NTP sources based on a cometary discharge in the point-to-point electrode configuration and a corona discharge in the point-to-ring electrode configuration. The electrical and emission properties of both discharges are reported. The microbicidal effect of NTP sources was tested on three strains of the bacterium Staphylococcus aureus (including the methicillin-resistant strain), the bacterium Pseudomonas aeruginosa, the yeast Candida albicans, and the micromycete Trichophyton interdigitale. In general, the cometary discharge is a less stable source of NTP and mostly forms smaller but more rapidly emerging inhibition zones on agar plates. Due to the point-to-ring electrode configuration, the second type of discharge has higher stability and provides larger affected but often not completely inhibited zones. However, after 60 min of exposure, the NTP sources based on the cometary and point-to-ring discharges showed a similar microbicidal effect for bacteria and an individual effect for microscopic fungi.


2018 ◽  
Vol 83 (2) ◽  
pp. 20801 ◽  
Author(s):  
G. Divya Deepak ◽  
Narendra Kumar Joshi ◽  
Ram Prakash ◽  
Udit Pal

In this paper, a dielectric barrier discharge plasma based atmospheric pressure plasma jet has been generated in a floating helix and floating end ring electrode configuration using mixture of argon and nitrogen gases (50:50 ratio). This configuration is subjected to a range of supply frequencies (10–25 kHz) and supply voltages (6.5–9.5 kV) at a fixed rate of gas flow rate (i.e., 1 l/min). The electrical characterization of the plasma jet has been carried out using a high voltage probe and current transformer. The current–voltage characteristics have been analyzed, and the power consumed by the device has been estimated at different applied combinations of supply frequency and voltages for optimum power consumption and maximum jet length. A comparative analysis of the results of the above experiments has shown that maximum power consumed by the device in helix electrode configuration with end ring is 19 W for (Ar+N2) mixture as compared to only 12 mW and 7.7 mW for Ar and He gas respectively (With end ring), this may be due to the main ionization mechanisms which are different depending on the working gas. Furthermore, maximum jet length of 42 mm has been obtained for He gas at 6 kV/25 kHz due to penning ionization process in comparison to jet lengths of only 32 mm for Ar gas and jet length of only 26 mm for Ar+N2 mixture. The obtained average power consumed and maximum jet length for mixture of (Ar+N2) gases are 6.5 W and 26 mm.


2021 ◽  
Vol 4 (1) ◽  
pp. 32
Author(s):  
Siddharth Swaminathan ◽  
Arezoo Emadi

Quartz Crystal Microbalance (QCM) is used for detecting microgram level mass changes in gas and liquid phase. Conventional QCM design comprises a circular electrode configuration with an evenly distributed mass loading area. However, their mass sensitivity distribution is found to be non-uniform due to the inherent energy trapping effect. In this paper, the recently developed QCM with a ring electrode and a ring-dot electrode configuration are evaluated. It is shown that this new configuration offers the ability to achieve a uniform mass sensitivity distribution, while attaining a comparable mass sensitivity for a reduced mass loading area. Finite Element Analysis is used to design and evaluate the conventional circular electrode QCM, and the proposed ring electrode and ring-dot electrode QCM configurations, where the mass loading area is reduced by 25% compared with the conventional sensor. Simulations are conducted to determine the sensor’s resonant frequency shifts for an added mass per unit area of 20 μg/mm2. The results indicate that newly designed ring and ring-dot electrode configurations operate at a higher resonant frequency. The observed frequency shift for the designed circular electrode, ring electrode, and ring-dot electrode configurations on a 333 μm thick quartz substrate are 85 kHz, 84 kHz, and 82 kHz, respectively. It is shown that the ring electrode and new ring-dot electrode configurations achieve a higher resonant frequency and offer a comparable sensing performance despite comprising of over 25% reduced mass loading area, in comparison to the conventional circular electrode configuration.


2021 ◽  
Vol 1748 ◽  
pp. 062011
Author(s):  
Zhongzheng He ◽  
Pengfei Li ◽  
Wei Wang ◽  
Liwei Shao ◽  
Xi Chen
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document