mass sensitivity
Recently Published Documents


TOTAL DOCUMENTS

179
(FIVE YEARS 44)

H-INDEX

20
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Yan Wang ◽  
Su-Peng Liang ◽  
Shu-Lin Shang ◽  
Yong-Bing Xiao ◽  
Yu-Xin Yuan

Abstract The 3D finite element (3D-FE) simulation and analysis of Love wave sensors based on PIB layers/SiO2/ST-90°X quartz structure, as well as the investigation of coupled resonance effect on the acoustic properties of the devices, are presented in this paper. The mass sensitivity of the basic Love wave device with SiO2 guiding layers solved analytically. And the highest mass sensitivity of 128 m2/kg is obtained as h s/λ =0.175. The sensitivity of the Love wave sensors for sensing VOCs is greatly improved due to the presence of coupled resonance induced by the PIB nanorods on the device surface. The frequency shifts of the sensor corresponding to CH2Cl2, CHCl3, CCl4, C2Cl4, CH3Cl and C2HCl3 with the concentration of 100 ppm are 1.431 kHz, 5.507 kHz, 13.437 kHz, 85.948 kHz, 0.127 kHz and 17.879 kHz, respectively. The viscoelasticity influence of sensitive material on the characteristics of SAW sensors is also studied. Taking account of the viscoelasticity of PIB layers, the sensitivities of SAW sensors with the PIB film and PIB nanorods decay in different degree. The gas sensing property of Love wave sensor with PIB nanorods is superior to that of the PIB films. Meanwhile, the Love wave sensors with PIB sensitive layers show good selectivity to C2Cl4, making it an ideal selection for gas sensing applications.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1635
Author(s):  
Ya Su ◽  
Rongxin Fu ◽  
Wenli Du ◽  
Han Yang ◽  
Li Ma ◽  
...  

Quantitative measurement of single cells can provide in-depth information about cell morphology and metabolism. However, current live-cell imaging techniques have a lack of quantitative detection ability. Herein, we proposed a label-free and quantitative multichannel wide-field interferometric imaging (MWII) technique with femtogram dry mass sensitivity to monitor single-cell metabolism long-term in situ culture. We demonstrated that MWII could reveal the intrinsic status of cells despite fluctuating culture conditions with 3.48 nm optical path difference sensitivity, 0.97 fg dry mass sensitivity and 2.4% average maximum relative change (maximum change/average) in dry mass. Utilizing the MWII system, different intrinsic cell growth characteristics of dry mass between HeLa cells and Human Cervical Epithelial Cells (HCerEpiC) were studied. The dry mass of HeLa cells consistently increased before the M phase, whereas that of HCerEpiC increased and then decreased. The maximum growth rate of HeLa cells was 11.7% higher than that of HCerEpiC. Furthermore, HeLa cells were treated with Gemcitabine to reveal the relationship between single-cell heterogeneity and chemotherapeutic efficacy. The results show that cells with higher nuclear dry mass and nuclear density standard deviations were more likely to survive the chemotherapy. In conclusion, MWII was presented as a technique for single-cell dry mass quantitative measurement, which had significant potential applications for cell growth dynamics research, cell subtype analysis, cell health characterization, medication guidance and adjuvant drug development.


2021 ◽  
Vol 863 ◽  
pp. 158555
Author(s):  
Paula G. Saiz ◽  
Jose M. Porro ◽  
Andoni Lasheras ◽  
Roberto Fernández de Luis ◽  
Iban Quintana ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
pp. 32
Author(s):  
Siddharth Swaminathan ◽  
Arezoo Emadi

Quartz Crystal Microbalance (QCM) is used for detecting microgram level mass changes in gas and liquid phase. Conventional QCM design comprises a circular electrode configuration with an evenly distributed mass loading area. However, their mass sensitivity distribution is found to be non-uniform due to the inherent energy trapping effect. In this paper, the recently developed QCM with a ring electrode and a ring-dot electrode configuration are evaluated. It is shown that this new configuration offers the ability to achieve a uniform mass sensitivity distribution, while attaining a comparable mass sensitivity for a reduced mass loading area. Finite Element Analysis is used to design and evaluate the conventional circular electrode QCM, and the proposed ring electrode and ring-dot electrode QCM configurations, where the mass loading area is reduced by 25% compared with the conventional sensor. Simulations are conducted to determine the sensor’s resonant frequency shifts for an added mass per unit area of 20 μg/mm2. The results indicate that newly designed ring and ring-dot electrode configurations operate at a higher resonant frequency. The observed frequency shift for the designed circular electrode, ring electrode, and ring-dot electrode configurations on a 333 μm thick quartz substrate are 85 kHz, 84 kHz, and 82 kHz, respectively. It is shown that the ring electrode and new ring-dot electrode configurations achieve a higher resonant frequency and offer a comparable sensing performance despite comprising of over 25% reduced mass loading area, in comparison to the conventional circular electrode configuration.


2021 ◽  
pp. 2140007
Author(s):  
Jie Peng ◽  
Haoran Niu ◽  
Jinlin Liu ◽  
Ya-Nan Yang ◽  
Junze Zhu ◽  
...  

Portable and ultra-sensitive film bulk acoustic resonator (FBAR) is a promising device to satisfy the requirement of detecting gas and biological molecule. In this work, a novel sensing device was developed to achieve ultrahigh sensitivity, by coupling polymer micropillars with a FBAR substrate to form a two-degrees-of-freedom resonance system (FBAR-micropillars). We systematically investigated the effects of micropillar structure on the characteristics of FBAR-micropillars device by finite element method (FEM). It was found that the resonant frequency shift increased with increasing the height of micropillars (h) within a certain range, and the FBAR-micropillars device displayed nonlinear frequency response, which was opposite to the linear response of conventional FBAR devices. In addition, a positive resonant frequency shift was captured near the “coupled resonant point” of the FBAR-micropillars device. The geometric parameters of micropillars, including micropillar diameter and micropillar spacing could also cause a change of Q-factor and mass sensitivity. The optimized design of the proposed device achieved a threefold improvement in sensitivity relative to conventional FBAR without pillars, suggesting a feasible method to improve the mass sensitivity of acoustic resonators.


Sign in / Sign up

Export Citation Format

Share Document