A new approach to the design of compact fluorescent lamp ballasts supplied from a very low input voltage: application to flyback inverter

Author(s):  
E.L. Corominas ◽  
J.M. Alonso ◽  
A.J. Calleja ◽  
A. Ribas ◽  
S. Rico-Secades
2017 ◽  
Vol 26 (12) ◽  
pp. 1750196 ◽  
Author(s):  
Yanzhao Ma ◽  
Yinghui Zou ◽  
Shengbing Zhang ◽  
Xiaoya Fan

A fully-integrated self-startup circuit with ultra-low voltage for thermal energy harvesting is presented in this paper. The converter is composed of an enhanced swing LC oscillator and a charge pump with decreased equivalent input capacitance. The LC oscillator has ultra-low input voltage and high output voltage swing, and the charge pump has a fast charging speed and small equivalent input capacitance. This circuit is designed with 0.18[Formula: see text][Formula: see text]m standard CMOS process. The simulation results show that the output voltage is in the range of 0.14[Formula: see text]V and 2.97[Formula: see text]V when the input voltage is changed from 50[Formula: see text]mV to 150[Formula: see text]mV. The output voltage could reach 2.87[Formula: see text]V at the input voltage of 150[Formula: see text]mV and the load of 1[Formula: see text]M[Formula: see text]. The maximum efficiency is in the range of 10.0% and 14.8% when the input voltage is changed from 0.2[Formula: see text]V to 0.4[Formula: see text]V. The circuit is suitable for thermoelectric energy harvesting to start with ultra-low input voltage.


2020 ◽  
Vol 29 (54) ◽  
pp. e11604
Author(s):  
Esteban Rojas-Osorio ◽  
Andrés Julián Saavedra-Montes ◽  
Carlos Andrés Ramos-Paja

This paper evaluates the effect of the voltage harmonic distortion over the efficiency of a compact fluorescent lamp that is fed with a constant RMS voltage and constant frequency. Several works have been published about the assessment of compact fluorescent lamps, but the effect of the voltage distortion over the efficiency is still an open topic. This work focuses on designing an experiment to estimate the efficiency of a compact fluorescent lamp while changing the voltage harmonic distortion of the power supply. First, a mathematical model that represents a bus susceptible to harmonic distortion (high impedance) that feeds the compact fluorescent lamp is analyzed. Then the mathematical model is reproduced through a test bench in a laboratory of rotating electrical machines. The test bench produces a three-phase bus with constant voltage and frequency, and variable voltage harmonic distortion. The compact fluorescent lamp is subjected to varying harmonic voltage distortion while recording its electrical variables and the produced lumens to estimate its efficiency. That is a practical approach to calculate the lamp efficiency while several works limit their scope measuring only the efficiency of the input converter. The experimental results show that a variation of the voltage harmonic distortion of 8 % on a compact fluorescent lamp reduces its efficiency. Those results put into evidence the importance of regulating harmonic distortion limits to reduce or prevent the increment of power losses caused by harmonic components.


Most of the devices in power system become faulty due to the large content of harmonics present in voltage and current. It is mainly caused by the conduction losses in the system. At first, it is necessary to determine the extent of harmonic present by calculating the total harmonic distortions i.e., root over sum of the integral harmonics divide by fundamental harmonic. Later, identification of type of method for reducing harmonics is essential. In this project we are mainly focusing on two types of PFC bridge boost rectifier to improve the efficiency for low and high input voltage range. It using back to back bridgeless PFC boost rectifier for high input voltage and for low input voltage range, three level bridgeless boost rectifiers respectively. Fast recovery diode instead of normal diodes for better reliability and efficiency is utilized. The end model is obtained by combining two circuits BTBBL (Back to back bridgeless boost PFC) and TLBL (Three level bridgeless boost PFC) to get the FMBL (Flexible mode bridgeless boost PFC). Due to presence of less no of components, conduction losses are less hence less distortion is observed with improved efficiency. A simulation is carried out for all three models using MATLAB Simulink platform. In hardware, TLP250 driver for MOSFET is used and which is interfaced with PIC microcontroller. The hardware results are obtained that validates the simulation results.


Sign in / Sign up

Export Citation Format

Share Document