Detection of Chipless RFID Tag Using a Single Antenna RFID Reader System

Author(s):  
Meriam A. Bibile ◽  
Grishma Khadka ◽  
Nemai C. Karmakar
2012 ◽  
pp. 127-155
Author(s):  
Stevan Preradovic ◽  
Nemai Chandra Karmakar
Keyword(s):  
Rfid Tag ◽  

Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1341
Author(s):  
Nicolas Barbot ◽  
Etienne Perret

In this paper, we present an accurate method to localize an object on a 2D plan using the chipless technology. This method requires a single antenna and a chipless tag. Phase difference between a reference position and an unknown position is used to estimate the distances between each resonator and the antenna. Then, multi-lateration is used to determine the position of the chipless tag in the plan. This method provides a better accuracy compared to classical ones based on received signal strength indicator (RSSI) or round-trip time-of-flight. In a square of 10 cm side above the antenna, error over distance determination between each resonators and the antenna is less than 2 mm and localization error on the tag coordinates in the 2D plan is lower than 1 cm. To increase the robustness of this method, we propose also a selection of a subset of the resonators used by the multi-lateration process. This method permits to increase the localization area by more than 20%. All the results have been obtained in real environment, and at different heights to show the robustness of the proposed approach. Finally, localization sensors based on this method can also be used as classical chipless RFID tag for identification with the same coding capacity.


2015 ◽  
Vol 2 (2) ◽  
pp. 86-96 ◽  
Author(s):  
M. Zomorrodi ◽  
N.C. Karmakar

The electromagnetic (EM) imaging technique at mm-band 60 GHz is proposed for data encoding purpose in the chipless Radio Frequency Identification (RFID) systems. The fully printable chipless RFID tag comprises tiny conductive EM polarizers to create high cross-polar radar cross-section. Synthetic aperture radar approach is applied for formation of the tag's EM-image and revealing the tag's content. The achieved high data encoding capacity of 2 bits/cm2in this technique based on a fully printable tag is very convincing for many applications. The system immunity to multipath interference, bending effect, and printing inaccuracy suggests huge potentials for low-cost item tagging. Tags are also readable through a tick paper envelop; hence secure identification is provided by the proposed technique.


Author(s):  
Shahid Habib ◽  
Amjad Ali ◽  
Ghaffer Iqbal Kiani ◽  
Wagma Ayub ◽  
Syed Muzahir Abbas ◽  
...  

Abstract This paper presents a polarization-independent 11-bit chipless RFID tag based on frequency-selective surface which has been designed for encoding and relative humidity (RH) sensing applications. The 10 exterior U-shaped resonators are used for item encoding whereas Kapton has been incorporated with the interior resonator for RH sensing. This radio-frequency identification (RFID) tag operates in S- and C-frequency bands. The proposed design offers enhanced fractional bandwidth up to 88% with the density of 4.46 bits/cm2. Both single- and dual-layer tags have been investigated. The simulated results are in good agreement with measured results and a comparison with existing literature is presented to show the performance. Simple geometry, high code density, large frequency signature bandwidth, high magnitude bit, high radar cross-section, and angular stability for more than 75° are the unique outcomes of the proposed design. In addition, RH sensing has been achieved by integrating the Kapton on the same RFID tag.


2021 ◽  
pp. 004051752198978
Author(s):  
Huating Tu ◽  
Yaya Zhang ◽  
Hong Hong ◽  
Jiyong Hu ◽  
Xin Ding

Nowadays, the chipless radio frequency identification (RFID) tag is attracting significant attention owing to its immense potential in tracking. However, most of the chipless tags are fabricated on hard printed circuit boards, and the wearable fabric-based chipless tag is still in the research stage. In this paper, a symmetrical 3rd L-shaped multi-resonator wearable chipless RFID tag is designed and screen-printed onto fabric. In order to investigate the influence of the non-uniform conductive layer on the signal transmission at high frequency, the surface and cross-sectional topographies of the printed conductive film are analyzed and the frequency response characteristics are simulated and measured. The obtained results show that the common fabric can be used as the substrate to screen print the L-shaped multi-resonators of the chipless RFID tag, and the quality of the screen printed line, especially a narrow line, significantly affects the radio frequency performance. For the screen-printed 3rd L-shaped stub resonators, the relative frequency shift compared with the simulation results are 0.99%, 0.88% and 2.26%, respectively. Generally, the surface morphology of fabric and screen-printed precision are critical in improving the performance of L-shaped multi-resonators.


Sign in / Sign up

Export Citation Format

Share Document