Experimental and Numerical Study of the Effect of Geometric Parameters on Liquid Single-Phase Pressure Drop in Micro-Scale Pin-Fin Arrays

Author(s):  
Valerie Pezzullo ◽  
Steven Voinier
Author(s):  
Jonathan R. Mita ◽  
Weilin Qu ◽  
Frank E. Pfefferkorn

This paper presents a numerical study of pressure drop associated with water liquid single-phase flow across an array of staggered micro-pin-fins having circular cross-section. The numerical simulations were validated against previously obtained experimental results using an array of staggered circular micro-pin-fins having the following dimensions: 180 micron diameter and 683 micron height. The longitudinal pitch and transverse pitch of the micro-pin-fins are equal to 399 microns. The effects of endwalls on pressure drop characteristics were then explored numerically. Six different micro-pin-fin height to diameter ratios were studied with seven different Reynolds numbers. All simulations were performed at room temperature (23°C). It was seen that for any given Reynolds number, as the pin height to diameter ratio increased, the pressure drop and resulting non-dimensional friction factor decreased.


2008 ◽  
Vol 130 (12) ◽  
Author(s):  
Weilin Qu ◽  
Abel Siu-Ho

This Technical Brief is Part II of a two-part study concerning water single-phase pressure drop and heat transfer in an array of staggered micro-pin-fins. This brief reports the pressure drop results. Both adiabatic and diabatic tests were conducted. Six previous friction factor correlations for low Reynolds number (Re<1000) flow in conventional and micro-pin-fin arrays were examined and found underpredicting the adiabatic data except the correlation by Short et al. (2002, “Performance of Pin Fin Cast Aluminum Coldwalls, Part 1: Friction Factor Correlation,” J. Thermophys. Heat Transfer, 16(3), pp. 389–396), which overpredicts the data. A new power-law type of correlation was developed, which showed good agreement with both adiabatic and diabatic data.


2015 ◽  
Vol 22 ◽  
pp. 214-226 ◽  
Author(s):  
Svein Edvardsen ◽  
Carlos Alberto Dorao ◽  
Ole Jørgen Nydal

1996 ◽  
Vol 118 (1) ◽  
pp. 21-26 ◽  
Author(s):  
David Copeland

Experimental measurements of multiple nozzle submerged jet array impingement single-phase and boiling heat transfer were made using FC-72 and 1 cm square copper pin fin arrays, having equal width and spacing of 0.1 and 0.2 mm, with aspect ratios from 1 to 5. Arrays of 25 and 100 nozzles were used, with diameters of 0.25 to 1.0 mm providing nozzle area from 5 to 20 mm2 (5 to 20% of the heat source base area). Flow rates of 2.5 to 10 cm3/s (0.15 to 0.6 l/min) were studied, with nozzle velocities from 0.125 to 2 m/s. Single nozzles and smooth surfaces were also evaluated for comparison. Single-phase heat transfer coefficients (based on planform area) from 2.4 to 49.3 kW/m2 K were measured, while critical heat flux varied from 45 to 395 W/cm2. Correlations of the single-phase heat transfer coefficient and critical heat flux as functions of pin fin dimensions, number of nozzles, nozzle area and liquid flow rate are provided.


2018 ◽  
Vol 140 (2) ◽  
Author(s):  
Chirag R. Kharangate ◽  
Ki Wook Jung ◽  
Sangwoo Jung ◽  
Daeyoung Kong ◽  
Joseph Schaadt ◽  
...  

Three-dimensional (3D) stacked integrated circuit (IC) chips offer significant performance improvement, but offer important challenges for thermal management including, for the case of microfluidic cooling, constraints on channel dimensions, and pressure drop. Here, we investigate heat transfer and pressure drop characteristics of a microfluidic cooling device with staggered pin-fin array arrangement with dimensions as follows: diameter D = 46.5 μm; spacing, S ∼ 100 μm; and height, H ∼ 110 μm. Deionized single-phase water with mass flow rates of m˙ = 15.1–64.1 g/min was used as the working fluid, corresponding to values of Re (based on pin fin diameter) from 23 to 135, where heat fluxes up to 141 W/cm2 are removed. The measurements yield local Nusselt numbers that vary little along the heated channel length and values for both the Nu and the friction factor do not agree well with most data for pin fin geometries in the literature. Two new correlations for the average Nusselt number (∼Re1.04) and Fanning friction factor (∼Re−0.52) are proposed that capture the heat transfer and pressure drop behavior for the geometric and operating conditions tested in this study with mean absolute error (MAE) of 4.9% and 1.7%, respectively. The work shows that a more comprehensive investigation is required on thermofluidic characterization of pin fin arrays with channel heights Hf < 150 μm and fin spacing S = 50–500 μm, respectively, with the Reynolds number, Re < 300.


Sign in / Sign up

Export Citation Format

Share Document