Fast and robust fundamental component estimation algorithm for a single phase system

Author(s):  
Andre Dias Sousa ◽  
Joao A. Moor Neto ◽  
Julio Cesar Ferreira ◽  
Mauro Sandro dos Reis ◽  
Livia Peres
1991 ◽  
Vol 24 (7) ◽  
pp. 59-64 ◽  
Author(s):  
R. W. Szetela

Steady-state models are presented to describe the wastewater treatment process in two activated sludge systems. One of these makes use of a single complete-mix reactor; the other one involves two complete-mix reactors arranged in series. The in-series system is equivalent to what is known as the “two-phase” activated sludge, a concept which is now being launched throughout Poland in conjunction with the PROMLECZ technology under implementation. Analysis of the mathematical models has revealed the following: (1) treatment efficiency, excess sludge production, energy consumption, and the degree of sludge stabilization are identical in the two systems; (2) there exists a technological equivalence of “two-phase” sludge with “single-phase” sludge; (3) the “two-phase” system has no technological advantage over the “single-phase” system.


Author(s):  
Nur Ashida Salim ◽  
Nur Diyana Shahirah Mohd Zain ◽  
Hasmaini Mohamad ◽  
Zuhaila Mat Yasin ◽  
Nur Fadilah Ab Aziz

<span lang="EN-US">Transient stability in power system is vital to be addressed due to large disturbances that could damage the system such as load changes and voltage increases. This paper presents a multi-machine transient stability using the Static Synchronous Series Compensator (SSSC). SSSC is a device that is connected in series with the power transmission line and produces controllable voltage which contribute to a better performance in the power system stability. As a result, this research has observed a comparison of the synchronization of a three-phase system during single-phase faults before and after installing the SSSC device. In addition, this research investigates the ability of three different types of controllers i.e. Proportional Integral (PI), Proportional Integral Derivation (PID), and Generic controllers to be added to the SSSC improve the transient stability as it cannot operate by itself. This is because the improvement is too small and not able to achieve the desired output. The task presented is to improve the synchronization of the system and time taken for the voltage to stabilize due to the fault. The simulation result shows that the SSSC with an additional controller can improve the stability of a multi-machine power system in a single phase fault.</span>


2019 ◽  
Vol 56 (1) ◽  
pp. 73-88
Author(s):  
Raphael Vincent ◽  
Martin Langlotz ◽  
Matthias Düngen

Decreased viscosity due to the influence of blowing agent in thermoplastic polymer melts is a key issue for understanding the process of foam extrusion. In a process for direct foam extrusion, a novel approach for inline viscosity measurement of single-phase systems in single screw extruders is used to experimentally evaluate a viscosity decrease. Two blowing agents (propane and carbon dioxide) are tested for their effect on the viscosity of a polypropylene melt. While mass fractions of blowing agent below [Formula: see text] show little to no effect in regard to viscosity reduction compared to a pure polymer melt, a mass fraction of [Formula: see text] already results in significantly decreased viscosity values. While melt temperature influences the viscosity of the polymer melt, measurements show no significant additional effect in regard to a lowered viscosity of a single-phase system of polymer and fully dissolved blowing agent.


Sign in / Sign up

Export Citation Format

Share Document