Virtual Sensors for Electromobility

Author(s):  
Maria Pia Fanti ◽  
Massimiliano Nolich ◽  
Michele Roccotelli ◽  
Walter Ukovich
Keyword(s):  
2020 ◽  
pp. 1-1
Author(s):  
Zahra Hosseinpoor ◽  
Mohammad Mehdi Arefi ◽  
Roozbeh Razavi-Far ◽  
Niloofar Mozafari ◽  
Saeede Hazbavi

Author(s):  
Ayax D. Ramirez ◽  
Stephen D. Russell ◽  
David W. Brock ◽  
Narayan R. Joshi

2021 ◽  
pp. 111493
Author(s):  
Narges Torabi ◽  
H. Burak Gunay ◽  
William O'Brien ◽  
Ricardo Moromisato

2000 ◽  
Author(s):  
Paul B. Deignan ◽  
Peter H. Meckl ◽  
Matthew A. Franchek ◽  
Salim A. Jaliwala ◽  
George G. Zhu

Abstract A methodology for the intelligent, model-independent selection of an appropriate set of input signals for the system identification of an unknown process is demonstrated. In modeling this process, it is shown that the terms of a simple nonlinear polynomial model may also be determined through the analysis of the average mutual information between inputs and the output. Average mutual information can be thought of as a nonlinear correlation coefficient and can be calculated from input/output data alone. The methodology described here is especially applicable to the development of virtual sensors.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3385 ◽  
Author(s):  
Hao Zhou ◽  
Guoping Hu ◽  
Junpeng Shi ◽  
Ziang Feng

Direction finding is a hot research area in radar and sonar systems. In the case of q ≥ 2, the 2qth-order cumulant based direction of arrival (DOA) estimation algorithm for the 2q-level nested array can achieve high resolution performance. A virtual 2qth-order difference co-array, which contains O(N2q) virtual sensors in the form of a uniform linear array (ULA), is yielded and the Gaussian noise is eliminated. However, some virtual elements are separated by the holes among the 2qth-order difference co-array and cannot be fully used. Even though the application of the multi-frequency method for minimum frequency separation (MFMFS) can fill the holes with low computation complexity, it requires that the number of frequencies must increase with the number of holes. In addition, the signal spectra have to be proportional for all frequencies, which is hard to satisfy when the number of holes is large. Aiming at this, we further propose a multi-frequency method for a minimum number of frequencies (MFMNF) and discuss the best frequency choice under two specific situations. Simulation results verify that, compared with the MFMFS method, the proposed MFMNF method can use only one frequency to fill all the holes while achieving a longer virtual array and the DOA estimation performance is, therefore, improved.


Sign in / Sign up

Export Citation Format

Share Document