scholarly journals Neural Network Virtual Sensors for Fuel Injection Quantities with Provable Performance Specifications

Author(s):  
Eric Wong ◽  
Tim Schneider ◽  
Joerg Schmitt ◽  
Frank R. Schmidt ◽  
J. Zico Kolter
2020 ◽  
pp. 146808742093173 ◽  
Author(s):  
Avilash Jain ◽  
Anand Krishnasamy ◽  
Pradeep V

One of the major limitations of reactivity controlled compression ignition is higher unburned hydrocarbon and carbon monoxide emissions and lower thermal efficiency at part load operating conditions. In the present study, a combined numerical approach using a commercial three-dimensional computational fluid dynamics code CONVERGE along with artificial neural network and genetic algorithm is presented to address the above limitation. A production light-duty diesel engine is modified to run in reactivity controlled compression ignition by replacing an existing mechanical fuel injection system with a flexible electronic port fuel injection and common rail direct injection systems. The injection schedules of port fuel injection and direct injection injectors are controlled using National Instruments port and direct injection driver modules. Upon validation of combustion and emission parameters, parametric investigations are carried out to establish the effects of direct-injected diesel fuel timing start of injection (SOI), premixed fuel ratio and intake charge temperature on the engine performance and emissions in reactivity controlled compression ignition. The results obtained show that the start of injection timing and intake charge temperature significantly influence combustion phasing, while the premixed fuel ratio controls mixture reactivity and combustion quality. By utilizing the data generated with the validated computational fluid dynamics models, the artificial neural network models are trained to predict the engine exhaust emissions and efficiency. The artificial neural network models for gross indicated efficiency and oxides of nitrogen (NOx) are then coupled with genetic algorithm to maximize gross indicated efficiency while keeping the NOx and soot emissions within Euro VI emission limits. By optimizing the start of injection timing, premixed fuel ratio and intake charge temperature simultaneously using the artificial neural network models coupled with genetic algorithm, 19% improvement in gross indicated efficiency, 60% and 64% reduction in hydrocarbon and carbon monoxide emissions, respectively, are obtained in reactivity controlled compression ignition compared to the baseline case.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7139
Author(s):  
Eldar Šabanovič ◽  
Paulius Kojis ◽  
Šarūnas Šukevičius ◽  
Barys Shyrokau ◽  
Valentin Ivanov ◽  
...  

With the automotive industry moving towards automated driving, sensing is increasingly important in enabling technology. The virtual sensors allow data fusion from various vehicle sensors and provide a prediction for measurement that is hard or too expensive to measure in another way or in the case of demand on continuous detection. In this paper, virtual sensing is discussed for the case of vehicle suspension control, where information about the relative velocity of the unsprung mass for each vehicle corner is required. The corresponding goal can be identified as a regression task with multi-input sequence input. The hypothesis is that the state-of-art method of Bidirectional Long–Short Term Memory (BiLSTM) can solve it. In this paper, a virtual sensor has been proposed and developed by training a neural network model. The simulations have been performed using an experimentally validated full vehicle model in IPG Carmaker. Simulations provided the reference data which were used for Neural Network (NN) training. The extensive dataset covering 26 scenarios has been used to obtain training, validation and testing data. The Bayesian Search was used to select the best neural network structure using root mean square error as a metric. The best network is made of 167 BiLSTM, 256 fully connected hidden units and 4 output units. Error histograms and spectral analysis of the predicted signal compared to the reference signal are presented. The results demonstrate the good applicability of neural network-based virtual sensors to estimate vehicle unsprung mass relative velocity.


Sign in / Sign up

Export Citation Format

Share Document