ADRC as an Exercise for Modeling and Control Design in the State-Space

Author(s):  
Mikulas Huba ◽  
Paulo Moura Oliveira ◽  
Damir Vrancic ◽  
Pavol Bistak
Robotica ◽  
2013 ◽  
Vol 32 (4) ◽  
pp. 515-532 ◽  
Author(s):  
Adam Y. Le ◽  
James K. Mills ◽  
Beno Benhabib

SUMMARYA novel rigid-body control design methodology for 6-degree-of-freedom (dof) parallel kinematic mechanisms (PKMs) is proposed. The synchronous control of PKM joints is addressed through a novel formulation of contour and lag errors. Robust performance as a control specification is addressed. A convex combination controller design approach is applied to address the problem of simultaneously satisfying multiple closed-loop specifications. The applied dynamic modeling approach allows the design methodology to be extended to 6-dof spatial PKMs. The methodology is applied to the design of a 6-dof PKM-based meso-milling machine tool and simulations are conducted.


2020 ◽  
Vol 10 (10) ◽  
pp. 3514 ◽  
Author(s):  
Adam Szabo ◽  
Tamas Becsi ◽  
Peter Gaspar

The paper presents the modeling and control design of a floating piston electro-pneumatic gearbox actuator and, moreover, the industrial validation of the controller system. As part of a heavy-duty vehicle, it needs to meet strict and contradictory requirements and units applying the system with different supply pressures in order to operate under various environmental conditions. Because of the high control frequency domain of the real system, post-modern control methods with high computational demands could not be used as they do not meet real-time requirements on automotive level. During the modeling phase, the essential simplifications are shown with the awareness of the trade-off between calculation speed and numerical accuracy to generate a multi-state piecewise-linear system. Two LTI control methods are introduced, i.e., a PD and an Linear-Quadratic Regulators (LQR) solution, in which the continuous control signals are transformed into discrete voltage solenoid commands for the valves. The validation of both the model and the control system are performed on a real physical implementation. The results show that both modeling and control design are suitable for the control tasks using floating piston cylinders and, moreover, these methods can be extended to electro-pneumatic cylinders with different layouts.


1985 ◽  
Vol 107 (3) ◽  
pp. 200-206 ◽  
Author(s):  
Y. Sakawa ◽  
A. Nakazumi

In this paper we first derive a dynamical model for the control of a rotary crane, which makes three kinds of motion (rotation, load hoisting, and boom hoisting) simultaneously. The goal is to transfer a load to a desired place in such a way that at the end of transfer the swing of the load decays as quickly as possible. We first apply an open-loop control input to the system such that the state of the system can be transferred to a neighborhood of the equilibrium state. Then we apply a feedback control signal so that the state of the system approaches the equilibrium state as quickly as possible. The results of computer simulation prove that the open-loop plus feedback control scheme works well.


Sign in / Sign up

Export Citation Format

Share Document