Modeling and Control of a Rotary Crane

1985 ◽  
Vol 107 (3) ◽  
pp. 200-206 ◽  
Author(s):  
Y. Sakawa ◽  
A. Nakazumi

In this paper we first derive a dynamical model for the control of a rotary crane, which makes three kinds of motion (rotation, load hoisting, and boom hoisting) simultaneously. The goal is to transfer a load to a desired place in such a way that at the end of transfer the swing of the load decays as quickly as possible. We first apply an open-loop control input to the system such that the state of the system can be transferred to a neighborhood of the equilibrium state. Then we apply a feedback control signal so that the state of the system approaches the equilibrium state as quickly as possible. The results of computer simulation prove that the open-loop plus feedback control scheme works well.

1988 ◽  
Vol 110 (3) ◽  
pp. 266-271 ◽  
Author(s):  
Kamal A. F. Moustafa ◽  
A. M. Ebeid

In this paper, we derive a nonlinear dynamical model for an overhead crane. The model takes into account simultaneous travel and transverse motions of the crane. The aim is to transport an object along a specified transport route in such a way that the swing angles are suppressed as quickly as possible. We develop an antiswing control system which adopts a feedback control to specify the crane speed at every moment. The gain matrix is chosen such that a desired rate of decay of the swing angles is obtained. The model and control scheme are simulated on a digital computer and the results prove that the feedback control works well.


2014 ◽  
Vol 25 (02) ◽  
pp. 255-282 ◽  
Author(s):  
Alfio Borzì ◽  
Suttida Wongkaew

A new refined flocking model that includes self-propelling, friction, attraction and repulsion, and alignment features is presented. This model takes into account various behavioral phenomena observed in biological and social systems. In addition, the presence of a leader is included in the system in order to develop a control strategy for the flocking model to accomplish desired objectives. Specifically, a model predictive control scheme is proposed that requires the solution of a sequence of open-loop optimality systems. An accurate Runge–Kutta scheme to discretize the optimality systems and a nonlinear conjugate gradient solver are implemented and discussed. Numerical experiments are performed that investigate the properties of the refined flocking model and demonstrate the ability of the control strategy to drive the flocking system to attain a desired target configuration and to follow a given trajectory.


Author(s):  
Jason D. Geder ◽  
Ravi Ramamurti ◽  
John Palmisano ◽  
Marius Pruessner ◽  
Banahalli Ratna ◽  
...  

This paper describes the modeling and control development of a bio-inspired unmanned underwater vehicle (UUV) propelled by four pectoral fins. Based on both computational fluid dynamics (CFD) and experimental fin data, we develop a UUV model that focuses on an accurate representation of the fin-generated forces. Models of these forces span a range of controllable fin parameters, as well as take into account leading-trailing fin interactions and free stream flow speeds. The vehicle model is validated by comparing open-loop simulated responses with experimentally measured responses to identical fin inputs. Closed-loop control algorithms, which command changes in fin kinematics, are tested on the vehicle. Comparison of experimental and simulation results for various maneuvers validates the fin and vehicle models, and demonstrates the precise maneuvering capabilities enabled by the actively controlled curvature pectoral fins.


Author(s):  
Witoon Panusittikorn ◽  
Paul I. Ro

A magnetostrictive actuator offers a long mechanical strain output in a broad bandwidth at a cost of a highly nonlinear magnetic hysteresis. Full utilization of this actuator in precision manufacturing requires a feedback loop as well as an advanced control scheme. A robust control scheme using sliding mode control with a variable switching gain was tailored to the nonlinear transducer. Nominal feedforward current controller that drives the magnetostriction was based on the inverse anhysteresis model. An additional switching gain based on the Lyapunov stability condition is implemented to restrain uncertainties. Compared to a traditional closed-loop control design, the proposed algorithm experimentally showed a greatly enhanced performance.


Author(s):  
V. P. Belavkin

A brief account of the quantum information dynamics and dynamical programming methods for optimal control of quantum unstable systems is given to both open loop and feedback control schemes corresponding respectively to deterministic and stochastic semi-Markov dynamics of stable or unstable systems. For the quantum feedback control scheme, we exploit the separation theorem of filtering and control aspects as in the usual case of quantum stable systems with non-demolition observation. This allows us to start with the Belavkin quantum filtering equation generalized to demolition observations and derive the generalized Hamilton–Jacobi–Bellman equation using standard arguments of classical control theory. This is equivalent to a Hamilton–Jacobi equation with an extra linear dissipative term if the control is restricted to Hamiltonian terms in the filtering equation. An unstable controlled qubit is considered as an example throughout the development of the formalism. Finally, we discuss optimum observation strategies to obtain a pure quantum qubit state from a mixed one.


2014 ◽  
Vol 651-653 ◽  
pp. 812-817 ◽  
Author(s):  
Jian Guo Zheng ◽  
Zhi Gang Zou ◽  
Hui Zeng ◽  
Tian Peng He

There has been wide interest in the control scheme of the electromagnetic levitation system due to its disadvantages of nonlinearity and open-loop uncertainty. A typical coil-ball levitation system is used in research. The forces of the ball are analyzed and a dynamic model of the whole electromagnetic levitation system is established. Based on the nonlinear state-space model, the coil-ball system is linearized and then a LQR control approach is proposed. Simulation results show that, compared with conventional pole assignment scheme, the electromagnetic levitation system under the proposed control approach gets a better performance, including smaller overshot and faster response.


Author(s):  
Haoyu Wang ◽  
Guowei Zhao ◽  
Hai Huang

This paper proposes a planning method of the theoretically fastest slew path, and correspondingly, an analytical open-loop control law for the minimum-time eigenaxis rotation of spacecraft with three reaction wheels. The path planning and the control law are based on the angular momentum conservation of the spacecraft system. Then, a control scheme is also proposed to correct the maneuver error caused by model uncertainties. The control law and control scheme are verified in numerical simulation cases. The results show that the control law would realize the fastest slew path for an eigenaxis rotation, and the control scheme is feasible in shortening the slew time.


Author(s):  
S. Singh ◽  
A. Sanyal ◽  
R. Smith ◽  
N. Nordkvist ◽  
M. Chyba

An autonomous underwater vehicle (AUV) is expected to operate in an ocean in the presence of poorly known disturbance forces and moments. The uncertainties of the environment makes it difficult to apply open-loop control scheme for the motion planning of the vehicle. The objective of this paper is to develop a robust feedback trajectory tracking control scheme for an AUV that can track a prescribed trajectory amidst such disturbances. We solve a general problem of feedback trajectory tracking of an AUV in SE (3). The feedback control scheme is derived using Lyapunov-type analysis. The results obtained from numerical simulations confirm the asymptotic tracking properties of the feedback control law. We apply the feedback control scheme to different mission scenarios, with the disturbances being initial errors in the state of the AUV.


Author(s):  
C-Y Chen ◽  
G T-C Chiu ◽  
C-C Cheng ◽  
H Peng

In this paper, the feasibility of using a voice coil back-electromotive voltage (back-e. m.f.) signal as feedback information for closed-loop control was investigated. A dual voice coil closed-box subwoofer system is used to demonstrate the effectiveness of back-e. m.f. feedback control. A second-order filter is developed to extract the velocity information from the coil back-e. m.f. signal. A pro-portional-plus-derivative (PD) controller is well suited for reducing the harmonic distortion and extending the subwoofer bass response. Experimental results verified that the proposed control scheme effectively extended the bass response of the subwoofer system by one octave and at the same time reduced harmonic distortion by more than 6dB. The proposed feedback and control scheme can be easily implemented using inexpensive analogue components, which can further reduce the cost and complexity of the system.


2016 ◽  
Vol 4 (2) ◽  
pp. 1-16
Author(s):  
Ahmed S. Khusheef

 A quadrotor is a four-rotor aircraft capable of vertical take-off and landing, hovering, forward flight, and having great maneuverability. Its platform can be made in a small size make it convenient for indoor applications as well as for outdoor uses. In model there are four input forces that are essentially the thrust provided by each propeller attached to each motor with a fixed angle. The quadrotor is basically considered an unstable system because of the aerodynamic effects; consequently, a close-loop control system is required to achieve stability and autonomy. Such system must enable the quadrotor to reach the desired attitude as fast as possible without any steady state error. In this paper, an optimal controller is designed based on a Proportional Integral Derivative (PID) control method to obtain stability in flying the quadrotor. The dynamic model of this vehicle will be also explained by using Euler-Newton method. The mechanical design was performed along with the design of the controlling algorithm. Matlab Simulink was used to test and analyze the performance of the proposed control strategy. The experimental results on the quadrotor demonstrated the effectiveness of the methodology used.


Sign in / Sign up

Export Citation Format

Share Document