Comparison of stimulus types in visual P300 speller of brain-computer interfaces

Author(s):  
Yang Liu ◽  
Zongtan Zhou ◽  
Dewen Hu
2019 ◽  
Vol 51 (1) ◽  
pp. 19-33 ◽  
Author(s):  
Jobin T. Philip ◽  
S. Thomas George

Brain-computer interfaces are sophisticated signal processing systems, which directly operate on neuronal signals to identify specific human intents. These systems can be applied to overcome certain disabilities or to enhance the natural capabilities of human beings. The visual P300 mind-speller is a prominent one among them, which has opened up tremendous possibilities in movement and communication applications. Today, there exist many state-of-the-art visual P300 mind-speller implementations in the literature as a result of numerous researches in this domain over the past 2 decades. Each of these systems can be evaluated in terms of performance metrics like classification accuracy, information transfer rate, and processing time. Various classification techniques associated with these systems, which include but are not limited to discriminant analysis, support vector machine, neural network, distance-based and ensemble of classifiers, have major roles in determining the overall system performances. The significance of a proper review on the recent developments in visual P300 mind-spellers with proper emphasis on their classification algorithms is the key insight for this work. This article is organized with a brief introduction to P300, concepts of visual P300 mind-spellers, the survey of literature with special focus on classification algorithms, followed by the discussion of various challenges and future directions.


Author(s):  
S. Srilekha ◽  
B. Vanathi

This paper focuses on electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) comparison to help the rehabilitation patients. Both methods have unique techniques and placement of electrodes. Usage of signals are different in application based on the economic conditions. This study helps in choosing the signal for the betterment of analysis. Ten healthy subject datasets of EEG & FNIRS are taken and applied to plot topography separately. Accuracy, Sensitivity, peaks, integral areas, etc are compared and plotted. The main advantages of this study are to prompt their necessities in the analysis of rehabilitation devices to manage their life as a typical individual.


Author(s):  
V. A. Maksimenko ◽  
A. A. Harchenko ◽  
A. Lüttjohann

Introduction: Now the great interest in studying the brain activity based on detection of oscillatory patterns on the recorded data of electrical neuronal activity (electroencephalograms) is associated with the possibility of developing brain-computer interfaces. Braincomputer interfaces are based on the real-time detection of characteristic patterns on electroencephalograms and their transformation  into commands for controlling external devices. One of the important areas of the brain-computer interfaces application is the control of the pathological activity of the brain. This is in demand for epilepsy patients, who do not respond to drug treatment.Purpose: A technique for detecting the characteristic patterns of neural activity preceding the occurrence of epileptic seizures.Results:Using multi-channel electroencephalograms, we consider the dynamics of thalamo-cortical brain network, preceded the occurrence of an epileptic seizure. We have developed technique which allows to predict the occurrence of an epileptic seizure. The technique has been implemented in a brain-computer interface, which has been tested in-vivo on the animal model of absence epilepsy.Practical relevance:The results of our study demonstrate the possibility of epileptic seizures prediction based on multichannel electroencephalograms. The obtained results can be used in the development of neurointerfaces for the prediction and prevention of seizures of various types of epilepsy in humans. 


2016 ◽  
Vol 46 (1) ◽  
pp. 41-53 ◽  
Author(s):  
Kirsten Wahlstrom ◽  
N. Ben Fairweather ◽  
Helen Ashman

Sign in / Sign up

Export Citation Format

Share Document