visual p300
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 9)

H-INDEX

19
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Ali Mobaien ◽  
Negar Kheirandish ◽  
Reza Boostani

<div>Abstract—Visual P300 mind speller is a brain-computer interface that allows an individual to type through his mind. For this goal, the subject sits in front of a screen full of characters, and when his desired one is highlighted, there will be a P300 response (a positive deflection nearly 300ms after stimulus) in his brain signals. Due to the very low signal-to noise (SNR) of the P300 in the background activities of the brain, detection of this component is challenging. Principal ERP reduction (pERP-RED) is a newly developed method that can effectively extract the underlying templates of event-related potentials (ERPs), by employing a three-step spatial filtering procedure. In this research, we investigate the performance of pERP-RED in conjunction with linear discriminant analysis (LDA) to classify P300 data. The proposed method is examined on a real P300 dataset and compared to the state-of-the-art LDA and support vector machines. The results demonstrate that the proposed method achieves higher classification accuracy in low SNRs and low numbers of training data.</div>



2021 ◽  
Author(s):  
Ali Mobaien ◽  
Negar Kheirandish ◽  
Reza Boostani

<div>Abstract—Visual P300 mind speller is a brain-computer interface that allows an individual to type through his mind. For this goal, the subject sits in front of a screen full of characters, and when his desired one is highlighted, there will be a P300 response (a positive deflection nearly 300ms after stimulus) in his brain signals. Due to the very low signal-to noise (SNR) of the P300 in the background activities of the brain, detection of this component is challenging. Principal ERP reduction (pERP-RED) is a newly developed method that can effectively extract the underlying templates of event-related potentials (ERPs), by employing a three-step spatial filtering procedure. In this research, we investigate the performance of pERP-RED in conjunction with linear discriminant analysis (LDA) to classify P300 data. The proposed method is examined on a real P300 dataset and compared to the state-of-the-art LDA and support vector machines. The results demonstrate that the proposed method achieves higher classification accuracy in low SNRs and low numbers of training data.</div>



2021 ◽  
Author(s):  
Stefano Tortora ◽  
Maria Rubega ◽  
Emanuela Formaggio ◽  
Roberto Di Marco ◽  
Stefano Masiero ◽  
...  


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3716
Author(s):  
Francisco Velasco-Álvarez ◽  
Álvaro Fernández-Rodríguez ◽  
Francisco-Javier Vizcaíno-Martín ◽  
Antonio Díaz-Estrella ◽  
Ricardo Ron-Angevin

Brain–computer interfaces (BCI) are a type of assistive technology that uses the brain signals of users to establish a communication and control channel between them and an external device. BCI systems may be a suitable tool to restore communication skills in severely motor-disabled patients, as BCI do not rely on muscular control. The loss of communication is one of the most negative consequences reported by such patients. This paper presents a BCI system focused on the control of four mainstream messaging applications running in a smartphone: WhatsApp, Telegram, e-mail and short message service (SMS). The control of the BCI is achieved through the well-known visual P300 row-column paradigm (RCP), allowing the user to select control commands as well as spelling characters. For the control of the smartphone, the system sends synthesized voice commands that are interpreted by a virtual assistant running in the smartphone. Four tasks related to the four mentioned messaging services were tested with 15 healthy volunteers, most of whom were able to accomplish the tasks, which included sending free text e-mails to an address proposed by the subjects themselves. The online performance results obtained, as well as the results of subjective questionnaires, support the viability of the proposed system.



Author(s):  
Minju Kim ◽  
Yun Joo Choi ◽  
Jongsu Kim ◽  
Sung-Phil Kim
Keyword(s):  


Author(s):  
Xinru Zhang ◽  
Jing Jin ◽  
Shurui Li ◽  
Xingyu Wang ◽  
Andrzej Cichocki
Keyword(s):  




Computers ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 68
Author(s):  
Patrick Schembri ◽  
Maruisz Pelc ◽  
Jixin Ma

This paper investigates the effect that selected auditory distractions have on the signal of a visual P300 Speller in terms of accuracy, amplitude, latency, user preference, signal morphology, and overall signal quality. In addition, it ensues the development of a hierarchical taxonomy aimed at categorizing distractions in the P300b domain and the effect thereof. This work is part of a larger electroencephalography based project and is based on the P300 speller brain–computer interface (oddball) paradigm and the xDAWN algorithm, with eight to ten healthy subjects, using a non-invasive brain–computer interface based on low-fidelity electroencephalographic (EEG) equipment. Our results suggest that the accuracy was best for the lab condition (LC) at 100%, followed by music at 90% (M90) at 98%, trailed by music at 30% (M30) and music at 60% (M60) equally at 96%, and shadowed by ambient noise (AN) at 92.5%, passive talking (PT) at 90%, and finally by active listening (AL) at 87.5%. The subjects’ preference prodigiously shows that the preferred condition was LC as originally expected, followed by M90, M60, AN, M30, AL, and PT. Statistical analysis between all independent variables shows that we accept our null hypothesis for both the amplitude and latency. This work includes data and comparisons from our previous papers. These additional results should give some insight into the practicability of the aforementioned P300 speller methodology and equipment to be used for real-world applications.



Sign in / Sign up

Export Citation Format

Share Document