Thermal Analysis of Biological Tissues Exposed To Electromagnetic Fields by Using Pennes' Bio-Heat Transfer Equation

Author(s):  
Ugur Sorgucu ◽  
Ibrahim Develi
2012 ◽  
Vol 134 (6) ◽  
Author(s):  
M. A. Aweda ◽  
M. Agida ◽  
M. Dada ◽  
O. B. Awojoyogbe ◽  
K. Isah ◽  
...  

In this study, an analytical solution to the heat transfer equation in biological tissues during laser heating is presented. The results were compared to recently published numerical simulations.


2008 ◽  
Vol 2 (1) ◽  
pp. 22-27 ◽  
Author(s):  
Juan A López-Molina ◽  
Maria J Rivera ◽  
Macarena Trujillo ◽  
Fernando Burdío ◽  
Juan L Lequerica ◽  
...  

Theoretical modeling is a technique widely used to study the electrical-thermal performance of different surgical procedures based on tissue heating by use of radiofrequency (RF) currents. Most models employ a parabolic heat transfer equation (PHTE) based on Fourier’s theory, which assumes an infinite propagation speed of thermal energy. We recently proposed a one-dimensional model in which the electrical-thermal coupled problem was analytically solved by using a hyperbolic heat transfer equation (HHTE), i.e. by considering a non zero thermal relaxation time. In this study, we particularized this solution to three typical examples of RF heating of biological tissues: heating of the cornea for refractive surgery, cardiac ablation for eliminating arrhythmias, and hepatic ablation for destroying tumors. A comparison was made of the PHTE and HHTE solutions. The differences between their temperature profiles were found to be higher for lower times and shorter distances from the electrode surface. Our results therefore suggest that HHTE should be considered for RF heating of the cornea (which requires very small electrodes and a heating time of 0.6 s), and for rapid ablations in cardiac tissue (less than 30 s).


2021 ◽  
Vol 1 (2) ◽  
pp. 12-20
Author(s):  
Najmeh Keshtkar ◽  
Johannes Mersch ◽  
Konrad Katzer ◽  
Felix Lohse ◽  
Lars Natkowski ◽  
...  

This paper presents the identification of thermal and mechanical parameters of shape memory alloys by using the heat transfer equation and a constitutive model. The identified parameters are then used to describe the mathematical model of a fiber-elastomer composite embedded with shape memory alloys. To verify the validity of the obtained equations, numerical simulations of the SMA temperature and composite bending are carried out and compared with the experimental results.


2016 ◽  
Vol 20 (suppl. 3) ◽  
pp. 777-780
Author(s):  
Huan Sun ◽  
Xing-Hua Liu

In this paper, we use the Laplace transform series expansion method to find the analytical solution for the local fractional heat-transfer equation defined on Cantor sets via local fractional calculus.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012006
Author(s):  
A G Kirdyashkin ◽  
A A Kirdyashkin ◽  
A V Borodin ◽  
V S Kolmakov

Abstract Temperature distribution in the upper mantle underneath the continent, as well as temperature distribution in the lower mantle, is obtained. In the continental lithosphere, the solution to the heat transfer equation is obtained in the model of conduction heat transfer with inner heat within the crust. To calculate the temperature distribution in the upper and lower mantle, we use the results of laboratory and theoretical modeling of free convective heat transfer in a horizontal layer heated from below and cooled from above.


Sign in / Sign up

Export Citation Format

Share Document