Stepwise Modelling and Analysis of A PV Module in Matlab Simulink

Author(s):  
Subhasri Kar ◽  
Sumit Banerjee ◽  
C K Chanda
Keyword(s):  
2021 ◽  
Vol 297 ◽  
pp. 01051
Author(s):  
Mohammed Agdam ◽  
Abdallah Asbayou ◽  
Mustapha Elyaqouti ◽  
Ahmed Ihlal ◽  
Khaled Assalaou

To respond to the increase in demand for electricity, the use of photovoltaics is growing considerably as it produces electrical energy without polluting the environment. In addition, to enhance the efficiency of photovoltaic modules, an MPPT algorithm is required to follow the maximum voltage and maximum current in the IV curve. This technique can be achieved by using a DC-DC converter. For this purpose, various MPPT techniques have been developed. The combination of MPPT and DC-DC converter is implemented using Matlab/Simulink and connected to a modelled PV module to validate the simulation.


2014 ◽  
Vol 550 ◽  
pp. 137-143 ◽  
Author(s):  
S. Narendiran ◽  
Sarat Kumar Sahoo

The paper discuss about the modelling and electrical characteristics of photovoltaic cell and its array type of construction in matlab-simulink environment at different insolation levels. The photovoltaic module is modelled using the diode electrical characteristic equation. The photovoltaic cell is analysed by voltage input and current input modules, The voltage and current input photovoltaic modules are simulated with different insolation values by varying the construction of PV modules. The results conclude that the current input PV module is well suited for applications were it shares same current when connected in series and voltage input PV module, where it shares same voltage when connected in parallel.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Salam J. Yaqoob ◽  
Ameer L. Saleh ◽  
Saad Motahhir ◽  
Ephraim B. Agyekum ◽  
Anand Nayyar ◽  
...  

AbstractA photovoltaic (PV) module is an equipment that converts solar energy to electrical energy. A mathematical model should be presented to show the behavior of this device. The well-known single-diode and double-diode models are utilized to demonstrate the electrical behavior of the PV module. “Matlab/Simulink” is used to model and simulate the PV models because it is considered a major software for modeling, analyzing, and solving dynamic system real problems. In this work, a new modeling method based on the “Multiplexer and Functions blocks” in the "Matlab/Simulink Library" is presented. The mathematical analysis of single and double diodes is conducted on the basis of their equivalent circuits with simple modification. The corresponding equations are built in Matlab by using the proposed method. The unknown internal parameters of the PV panel circuit are extracted by using the PV array tool in Simulink, which is a simple method to obtain the PV parameters at certain weather conditions. Double-diode model results are compared with the single-diode model under various irradiances and temperatures to verify the performance and accuracy of the proposed method. The proposed method shows good agreement in terms of the I–V and P–V characteristics. A monocrystalline NST-120 W PV module is used to validate the proposed method. This module is connected to a variable load and tested for one summer day. The experimental voltage, current, and power are obtained under various irradiances and temperatures, and the I–V and P–V characteristics are obtained.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
R. Ayaz ◽  
I. Nakir ◽  
M. Tanrioven

A photovoltaic (PV) model is proposed on Matlab/Simulink environment considering the real atmospheric conditions and this PV model is tested with different PV panels technologies (monocrystalline silicon, polycrystalline silicon, and thin film). The meteorological data of Istanbul—the location of the study—such as irradiance, cell temperature, and wind speed are taken into account in the proposed model for each technology. Eventually, the power outputs of the PV module under real atmospheric conditions are measured for resistive loading and these powers are compared with the results of proposed PV model. As a result of the comparison, it is shown that the proposed model is more compatible for monocrystal silicon and thin-film modules; however, it does not show a good correlation with polycrystalline silicon PV module.


In this paper, modeling and performance analysis of conventional configurations are Series-Parallel (SP), BridgeLinked (BL), Honey-Comb (HC), Total-Cross-Tied(TCT) and proposed hybrid configurations are SP-TCT, BL-TCT, HC-TCT, BL-HC and modified BL(MBL), modified HC(MHC), proposed optimal interconnection type configurations of a 5x5 size solar PV array under ten different partial shading cases it causes shading losses and compare the best configuration with respect to array power, number of interconnections or ties required between shaded modules in the array. The proposed optimal interconnection method reduces the number of ties required between modules and these ties are based on the position of number of shaded modules in the entire solar PV array. For the performance analysis of above 11 configurations, total ten shading cases are considered and compare the result with one un-shaded case-U of an irradiance 1000 W/m2 . The PV module parameters of Vikram Solar ELDORA 270 are used for modeling of above 11 conventional and proposed PV array configurations and simulate the models in MATLAB/ Simulink software.


Sign in / Sign up

Export Citation Format

Share Document