Modelling and Simulation of Solar Photovoltaic Cell for Different Insolation Values Based on MATLAB/Simulink Environment

2014 ◽  
Vol 550 ◽  
pp. 137-143 ◽  
Author(s):  
S. Narendiran ◽  
Sarat Kumar Sahoo

The paper discuss about the modelling and electrical characteristics of photovoltaic cell and its array type of construction in matlab-simulink environment at different insolation levels. The photovoltaic module is modelled using the diode electrical characteristic equation. The photovoltaic cell is analysed by voltage input and current input modules, The voltage and current input photovoltaic modules are simulated with different insolation values by varying the construction of PV modules. The results conclude that the current input PV module is well suited for applications were it shares same current when connected in series and voltage input PV module, where it shares same voltage when connected in parallel.

Author(s):  
Siti Amely Jumaat ◽  
Adhwa Amsyar Syazwan Ab Majid ◽  
Mohd Noor Abdullah ◽  
Nur Hanis Radzi ◽  
Rohaiza Hamdan ◽  
...  

This project aims to model a solar Photovoltaic (PV) Module using MATLAB Simulink. In Renewable Energy (RE) field, many studies have been carried out to determine the level of efficiency and performance of a specific PV module. Therefore, this research will carry out the modeling of the 120W Monocrystalline Photovoltaic Module by Su-Kam Solar using MATLAB Simulink to determine the efficiency and performance. The input parameters that consists of Solar Irradiance (G) and Temperature (T) data will be collected at location 1.8635° N, 103.1089° E which is in Parit Raja, Batu Pahat, Johor. The results are shown in I-V curve and P-V curve and compared with the theory of I-V and P-V curve. Other than that, the PV module have different performance in different value of irradiance and temperature. Lastly, the PV Module is work efficiently and full performance at Standard Test Conditon (STC).


Author(s):  
D. I. Zalizny

A new Simulink model of a photovoltaic cell has been proposed. The model is focused on the use of a standard SimPowerSystems library with power engineering elements from the MatLab/Simulink software package. The model allows altering the values of solar irradiance, photovoltaic cell temperature and load resistance. The results of the model application are the calculated values of voltages and currents at the photovoltaic cell output. The Simulink model that has been developed implements the known dependence of the photovoltaic cell volt-ampere characteristic by using both standard MatLab/Simulink blocks and special electric SimPowerSystems library blocks. The model is characterized by the fact that the series and parallel resistance of the photovoltaic cell are made in the form of resistors from the SimPowerSystems library. The main calculation algorithm is implemented programmatically by using the “C” programming language. To increase the algorithm stability to algebraic cycles the restrictions parameters are introduced. A new technique of calculating the photovoltaic cell model parameters based on experimental data has been proposed. The technique includes the preparation of a system of equations with experimental values of the photovoltaic cell voltages and currents. Experimental tests have been carried out for the photovoltaic module OSP XTP 250 under different solar irradiance values. The tests showed that the relative error of the Simulink model that has been developed does not exceed 12 %. The Simulink model makes it possible to build photovoltaic modules and then to build schemes of photovoltaic power plants as a part of power supply systems. Due to the latter it is possible to simulate the electricity consumers’ work, weather conditions, and the presence of shadows or pollution on the surface of photovoltaic modules. Also, one can carry out a simulation of increasing failures in power plant photovoltaic modules, e.g. simulating of modules efficiency reducing because of their degradation, or simulating of modules series resistance increasing because of the photovoltaic cell internal contacts deterioration. The Simulink model that has been developed can be used both at the design stage and at the stage of photoelectric power plants operation.


Solar Energy is one of the cleanest forms of energy harnessed from the sunlight using semiconductors through photoelectric effect. This paper reviews the existing models to study the effect of partial shading conditions or varying irradiance on the solar modules. In this paper a PV module is simulated in Matlab/ Simulink using solar cell block from Simelectronics Library to study the effect of shadows on the output power under different panel positioning under different load conditions. The simulation results have been validated against the real time study and measurements. Both the simulation and experimental results confirm that the power loss due to shading effects in a solar photovoltaic module is influenced by the topology and the interconnection of the PV cells.


2021 ◽  
Vol 13 (11) ◽  
pp. 6364
Author(s):  
June Raymond L. Mariano ◽  
Yun-Chuan Lin ◽  
Mingyu Liao ◽  
Herchang Ay

Photovoltaic (PV) systems directly convert solar energy into electricity and researchers are taking into consideration the design of photovoltaic cell interconnections to form a photovoltaic module that maximizes solar irradiance. The purpose of this study is to evaluate the cell spacing effect of light diffusion on output power. In this work, the light absorption of solar PV cells in a module with three different cell spacings was studied. An optical engineering software program was used to analyze the reflecting light on the backsheet of the solar PV module towards the solar cell with varied internal cell spacing of 2 mm, 5 mm, and 8 mm. Then, assessments were performed under standard test conditions to investigate the power output of the PV modules. The results of the study show that the module with an internal cell spacing of 8 mm generated more power than 5 mm and 2 mm. Conversely, internal cell spacing from 2 mm to 5 mm revealed a greater increase of power output on the solar PV module compared to 5 mm to 8 mm. Furthermore, based on the simulation and experiment, internal cell spacing variation showed that the power output of a solar PV module can increase its potential to produce more power from the diffuse reflectance of light.


Author(s):  
Mansour Zegrar ◽  
M’hamed Houari Zerhouni ◽  
Mohamed Tarik Benmessaoud ◽  
Fatima Zohra Zerhouni

In recent years, solar photovoltaic energy is becoming very important in the generation of green electricity. Solar photovoltaic effect directly converts solar radiation into electricity. The output of the photovoltaic module MPV depends on several factors as solar irradiation and cell temperature. A curve tracer is a system used to acquire the PV current-voltage characteristics, in real time, in an efficient manner. The shape of the I-V curve gives useful information about the possible anomalies of a PV device. This paper describes an experimental system developed to measure the current–voltage curve of a MPV under real conditions. The measurement is performed in an automated way. This present paper presents the design, and the construction of I-V simple curve tracer for photovoltaic modules. This device is important for photovoltaic (PV) performance assessment for the measurement, extraction, elaboration and diagnose of entire current-voltage I-V curves for several photovoltaic modules. This system permits to sweep the entire I-V curve, in short time, with different climatic and loads conditions. An experimental test bench is described. This tracer is simple and the experimental results present good performance. Simulation and experimental tests have been carried out. Experimental results presented good performance.


2021 ◽  
Vol 297 ◽  
pp. 01051
Author(s):  
Mohammed Agdam ◽  
Abdallah Asbayou ◽  
Mustapha Elyaqouti ◽  
Ahmed Ihlal ◽  
Khaled Assalaou

To respond to the increase in demand for electricity, the use of photovoltaics is growing considerably as it produces electrical energy without polluting the environment. In addition, to enhance the efficiency of photovoltaic modules, an MPPT algorithm is required to follow the maximum voltage and maximum current in the IV curve. This technique can be achieved by using a DC-DC converter. For this purpose, various MPPT techniques have been developed. The combination of MPPT and DC-DC converter is implemented using Matlab/Simulink and connected to a modelled PV module to validate the simulation.


Author(s):  
Kotchapong Sumanonta ◽  
Pasist Suwanapingkarl ◽  
Pisit Liutanakul

This article presents a novel model for the equivalent circuit of a photovoltaic module. This circuit consists of the following important parameters: a single diode, series resistance (Rs) and parallel resistance (Rp) that can be directly adjusted according to ambient temperature and the irradiance. The single diode in the circuit is directly related to the ideality factor (m), which represents the relationship between the materials and significant structures of PV module such as mono crystalline, multi crystalline and thin film technology.  Especially, the proposed model in this article is to present the simplified model that can calculate the results of I-V curves faster and more accurate than other methods of the previous models. This can show that the proposed models are more suitable for the practical application. In addition, the results of the proposed model are validated by the datasheet, the practical data in the laboratory (indoor test) and the onsite data (outdoor test). This ensures that the less than 0.1% absolute errors of the model can be accepted.


2015 ◽  
Vol 785 ◽  
pp. 220-224 ◽  
Author(s):  
Jin Chuan Teo ◽  
Rodney H.G. Tan ◽  
V.H. Mok

This paper presents the investigation of partial shading characteristics of mono-crystalline and poly-crystalline photovoltaic module connected in series. Simulink models are developed to assist the investigation to determine the ideality factor for mono-crystalline and poly-crystalline photovoltaic module. Commercially available mono-crystalline and poly-crystalline photovoltaic module are used to extract measurable parameters for the model to study the behaviour of I-V curve. Measurements have been conducted for the investigation includingmono-crystalline only, poly-crystalline only, both unshaded, mono-crystalline shaded and poly-crystalline shaded. This paper contributes to the understanding of partial shading characteristics of different materials presence in photovoltaic string.


2017 ◽  
Vol 6 (2) ◽  
pp. 181 ◽  
Author(s):  
Kamaljyoti Talukdar

The present work consists of the modeling and analysis of solar photovoltaic panels integrated with electrolyzer bank and Polymer Electrolyte Membrane (PEM) fuel cell stacks for running different appliances of a hospital located in Kolkata for different climatic conditions. Electric power is generated by an array of solar photovoltaic modules. Excess energy after meeting the requirements of the hospital during peak sunshine hours is supplied to an electrolyzer bank to generate hydrogen gas, which is consumed by the PEM fuel cell stack to support the power requirement during the energy deficit hours. The study reveals that 875 solar photovoltaic modules in parallel each having 2 modules in series of Central Electronics Limited Make PM 150 with a 178.537 kW electrolyzer and 27 PEM fuel cell stacks, each of 382.372 W, can support the energy requirement of a 200 lights (100 W each), 4 pumps (2 kW each), 120 fans(65 W each) and 5 refrigerators (2 kW each)system operated for 16 hours, 2 hours,15 hours and 24 hours respectively. 123 solar photovoltaic modules in parallel each having 2 modules in series of Central Electronics Limited Make PM 150 is needed to run the gas compressor for storing hydrogen in the cylinder during sunshine hours.  Keywords: Central Electronics Limited, Electrolyzer, PEM, PM 150, Solar photovoltaic. Article History: Received Feb 5th 2017; Received in revised form June 2nd 2017; Accepted June 28th 2017; Available onlineHow to Cite This Article: Talukdar, K. (2017). Modeling and Analysis of Solar Photovoltaic Assisted Electrolyzer-Polymer Electrolyte Membrane Fuel Cell For Running a Hospital in Remote Area in Kolkata,India. International Journal of Renewable Energy Develeopment, 6(2), 181-191.https://dx.doi.org/10.14710/ijred.6.2.181-191


2017 ◽  
Vol 7 (5) ◽  
pp. 1980-1986
Author(s):  
A. Q. Jakhrani ◽  
A. R. Jatoi ◽  
S. H. Jakhrani

The purpose of this study is to fabricate and analyze an active cooling system for reducing photovoltaic (PV) module temperature and increasing its efficiency. An active cooling system was devised to cool the PV module. Two modules of same specifications were used for this study. One module was cooled, and other was left un-cooled for performance comparison. Solar radiations, wind speed, ambient temperature and temperatures at different points of the fabricated system were measured. The modules were mounted on a frame facing true south at the inclination of the latitude of the location. The measurements were taken during daytime with one hour intervals for two weeks. The temperatures at various points on cooled and un-cooled photovoltaic modules were noted using two different flow rates with 1 lit/min and 2 lit/min. It was discovered that the efficiency of PV module was enhanced from 6% to 7% during study period. The flow rate of 1lit/min was found more feasible for heat extraction as compared to the flow rate of 2lit/min. The wind speed was found to be more helpful for heat extraction from the modules as compared to other climatic parameters.


Sign in / Sign up

Export Citation Format

Share Document