scholarly journals Comparative study with practical validation of photovoltaic monocrystalline module for single and double diode models

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Salam J. Yaqoob ◽  
Ameer L. Saleh ◽  
Saad Motahhir ◽  
Ephraim B. Agyekum ◽  
Anand Nayyar ◽  
...  

AbstractA photovoltaic (PV) module is an equipment that converts solar energy to electrical energy. A mathematical model should be presented to show the behavior of this device. The well-known single-diode and double-diode models are utilized to demonstrate the electrical behavior of the PV module. “Matlab/Simulink” is used to model and simulate the PV models because it is considered a major software for modeling, analyzing, and solving dynamic system real problems. In this work, a new modeling method based on the “Multiplexer and Functions blocks” in the "Matlab/Simulink Library" is presented. The mathematical analysis of single and double diodes is conducted on the basis of their equivalent circuits with simple modification. The corresponding equations are built in Matlab by using the proposed method. The unknown internal parameters of the PV panel circuit are extracted by using the PV array tool in Simulink, which is a simple method to obtain the PV parameters at certain weather conditions. Double-diode model results are compared with the single-diode model under various irradiances and temperatures to verify the performance and accuracy of the proposed method. The proposed method shows good agreement in terms of the I–V and P–V characteristics. A monocrystalline NST-120 W PV module is used to validate the proposed method. This module is connected to a variable load and tested for one summer day. The experimental voltage, current, and power are obtained under various irradiances and temperatures, and the I–V and P–V characteristics are obtained.

2021 ◽  
Author(s):  
Ameer L. Saleh ◽  
Saad Motahhir ◽  
Salam J. Yaqoob ◽  

Abstract The photovoltaic (PV) module is equipment that converted sunlight energy to electrical energy. To show the behavior of this device, a mathematical model should be presented. The well-known single-diode and double-diode models were utilized to demonstrate the electrical behavior of the PV module. Moreover, the single and double-diode models have been explained and simulated to study the difference between them under different weather conditions. Furthermore, the mathematical analysis of these models are carried out based on their equivalent circuits. Since, the "Matlab/Simulink" is considered as one of the major software for modeling, analyzing, and solving the dynamic system real problems; it has been used to model and simulate the PV models. In this work the "Mux." and "Fcn." functions in the "Matlab/ Simulink Library" are used which is considered a simple and precise procedure to show the I-V and P-V characteristics. As a result, more accurate results of the I-V and P-V curves have been obtained by the double-diode model compared to the single-diode model. Experimentally, the monocrystalline NST-120W PV module is used to validate the proposed work. The laboratory devices of lux meter, thermometer, ammeter, and voltmeter are used to see the practical results and show the performance of the PV module for different weather conditions. Finally, the experimental voltage, current and power are obtained for the various values of irradiance and temperature through a variable resistive load to obtain the I-V and P-V graphs.


2021 ◽  
Vol 297 ◽  
pp. 01051
Author(s):  
Mohammed Agdam ◽  
Abdallah Asbayou ◽  
Mustapha Elyaqouti ◽  
Ahmed Ihlal ◽  
Khaled Assalaou

To respond to the increase in demand for electricity, the use of photovoltaics is growing considerably as it produces electrical energy without polluting the environment. In addition, to enhance the efficiency of photovoltaic modules, an MPPT algorithm is required to follow the maximum voltage and maximum current in the IV curve. This technique can be achieved by using a DC-DC converter. For this purpose, various MPPT techniques have been developed. The combination of MPPT and DC-DC converter is implemented using Matlab/Simulink and connected to a modelled PV module to validate the simulation.


2021 ◽  
Vol 39 (2) ◽  
pp. 643-652
Author(s):  
Stefano Aneli ◽  
Roberta Arena ◽  
Antonio Gagliano

The electrical efficiency of photovoltaic (PV) modules can be improved through the cooling of the PV. Among the passive cooling strategy, one of the most promising concerns the use of phase change materials (PCMs) to decrease the operative temperature of a PV panel. This paper investigates the performances of a conventional PV panel in which two organic PCMs are added (PV-PCM) to reduce the temperature rise of PV cells and consequently to increase the electrical performances. With this aim, unsteady numerical simulations have been carried with Ansys Fluent software using a two-dimensional simplified geometry for the PV modules with the PCM is incorporated (PV-PCM), as well as for the benchmark PV module. The numerical simulations have allowed evaluating the PV cell temperatures, the power production, as well the PCM thermal behavior. As regards this latter aspect the dynamic analysis has evidenced the need to extend the time of simulation at least for two days in such way to take into account of the degree of solidification achieved during the night by the PCM materials. PCM with low melting temperature cannot complete solidifying during the night and so the heat stored during the day will be lesser than the theoretical one. The results of this study pointed out that the PV-PCM units allow achieving higher performances in comparison with a conventional PV module, especially during the hottest months. An increase in the peak power of 10% and of 3.5% of the energy produced all year round is attained.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6247
Author(s):  
Krzysztof Górecki ◽  
Jacek Dąbrowski ◽  
Ewa Krac

This article proposes a model of an actual photovoltaic installation situated in the Gdynia Maritime University, Poland. This model is formulated in the form of a SPICE network. In the presented model, the influence of selected weather parameters and thermal phenomena on the properties of the components of this installation are taken into account. The structure of the analyzed installation and the form of the formulated model are both presented. By means of this model, values of the power produced by the installation considered in different seasons and different times of the day are computed. The obtained computation results are compared to the measurement results. Good agreement between the results of measurements and computations is obtained. The obtained results of the investigations confirm the considerable influence of weather conditions, as well as daily and seasonal changes in solar irradiation and the ambient temperature, on the electrical energy produced. In the summer months, a decrease in the energy efficiency of the conversion of solar energy into electrical energy in comparison to the winter months is also visible and can even be twofold.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 692 ◽  
Author(s):  
Maen Takruri ◽  
Maissa Farhat ◽  
Oscar Barambones ◽  
José Antonio Ramos-Hernanz ◽  
Mohammed Jawdat Turkieh ◽  
...  

This project studies the conditions at which the maximum power point of a photovoltaic (PV) panel is obtained. It shows that the maximum power point is very sensitive to external disturbances such as temperature and irradiation. It introduces a novel method for maximizing the output power of a PV panel when connected to a DC/DC boost converter under variable load conditions. The main contribution of this work is to predict the optimum reference voltage of the PV panel at all-weather conditions using machine learning strategies and to use it as a reference for a Proportional-Integral-Derivative controller that ensures that the DC/DC boost converter provides a stable output voltage and maximum power under different weather conditions and loads. Evaluations of the proposed system, which uses an experimental photovoltaic dataset gathered from Spain, prove that it is robust against internal and external disturbances. They also show that the system performs better when using support vector machines as the machine learning strategy compared to the case when using general regression neural networks.


2012 ◽  
Vol 4 (1) ◽  
pp. 51-55
Author(s):  
Dominykas Vasarevičius ◽  
Modestas Pikutis

Solar cells generate maximum power only when the load is optimized according insolation and module temperature. This function is performed by MPPT systems. While developing MPPT, it is useful to create a mathematical model that allows the simulation of different weather conditions affecting solar modules. Solar insolation, cloud cover imitation and solar cell models have been created in Matlab/Simulink environment. Comparing the simulation of solar insolation on a cloudy day with the measurements made using a pyrometer show that the model generates signal changes according to the laws similar to those of a real life signal. The model can generate solar insolation values in real time, which is useful for predicting the amount of electrical energy produced from solar power. The model can operate with the help of using the stored signal, thus a comparison of different MPPT algorithms can be provided. Santrauka Saulės elementai didžiausią galią sukuria tik tada, kai apkrova yra parinkta pagal elementą veikiantį saulės energijos srautą ir modulio temperatūrą. Apkrovai parinkti naudojamos didžiausios galios sekimo (DGTS) sistemos. Kintant oro sąlygoms šios sistemos nespėja prisitaikyti prie saulės elemento parametrų. Kuriant ir tiriant DGTS algoritmus tikslinga sudaryti matematinį modelį, imituojantį skirtingomis oro sąlygomis veikiančius saulės elementus. Pateikiami sudaryti saulės energijos srauto (SES), debesų dangos imitavimo ir saulės modulio matematiniai modeliai Matlab/Simulink terpėje. Lyginant modeliuoto debesuotą dieną SES kitimo dėsnius su realiais piranometru pamatuotais rezultatais nustatyta, kad modeliu imituojamas SES atitinka realųjį. Modelyje generuojamos SES vertės realiajame laike yra naudingos prognozuojant saulės jėgainės pagamintos elektros energijos kiekį. Modelyje numatyta galimybė išsaugoti SES signalą, todėl juo galima atlikti tikslų skirtingų DGTS algoritmų veikimo palyginimą. Reikšminiai žodžiai: saulės energija, saulės elementai, didžiausios galios taško sekimas.


2019 ◽  
Vol 01 (02) ◽  
pp. 125-135
Author(s):  
Bouchra BENABDELKRIM ◽  
Ali Benatiallah ◽  
Touhami GHAITAOUI ◽  
◽  
◽  
...  

Usually, manufacturers provide PV panels, accompanied with data measured under Standard Test Conditions (STC), i.e. determined at AM1.5 with an irradiance of 1000W/m2 and a cell temperature equal to 25 C. In fact, these conditions do not reflect the reality of natural operation of PV panel conditions and these functional data associated with the real panel operating point may vary from one environment to another due to the change in weather conditions. The characterization of different types of PV panels under natural conditions of operation is, therefore, necessary in order to have a global view about the true electrical performance of different technologies at a given site. This work evaluates the influence of climatic conditions on the behavior of QS-60DGF module which has been installed at the Unit of Research in Renewable energy URERMS Adrar in the southern Algeria. The degradation evaluation of QS-60DGF module with different defects was performed, using (I-V/P-V) characteristics under daily weather conditions and the the visual inspection such as glass breakag. This study is to investigate the degradation rates of a-Si PV module after more than one year of outdoor exposure in desert conditions.


2018 ◽  
Vol 12 (2) ◽  
pp. 98 ◽  
Author(s):  
Jalaluddin . ◽  
Baharuddin Mire

Actual performance of photovoltaic module with solar tracking is presented. Solar radiation can be converted into electrical energy using photovoltaic (PV) modules. Performance of polycristalline silicon PV modules with and without solar tracking are investigated experimentally. The PV module with dimension 698 x 518 x 25 mm has maximum power and voltage is 45 Watt and 18 Volt respectively. Based on the experiment data, it is concluded that the performance of PV module with solar tracking increases in the morning and afternoon compared with that of fixed PV module. It increases about 18 % in the morning from 10:00 to 12:00 and in the afternoon from 13:30 to 14:00 (local time). This study also shows the daily performance characteristic of the two PV modules. Using PV module with solar tracking provides a better performance than fixed PV module. 


1984 ◽  
Vol 106 (2) ◽  
pp. 306-312
Author(s):  
S. K. Mao ◽  
D. T. Li

A streamline curvature method for calculating S1 surface flow in turbines is presented. The authors propose a simple method in which a domain of calculation can be changed into an orderly rectangle without making coordinate transformations. Calculation results obtained on subsonic and transonic turbine cascades have been compared with those of experiment and another theory. Good agreement has been found. When calculating blade-to-blade flow velocity at subsonic speed, a function approximation technique can be used in lieu of iteration method in order to reduce calculation time. If the calculated flow section is of a mixed (subsonic-supersonic) flow type, a Boolean expression obtained from the truth table of flow states is proposed to judge the integrated character of the mixed flow section. Similarly, another Boolean expression is used to determine whether there exists a “choking” of the relevant section. Periodical conditions are satisfied by iterating the first-order derivative of stagnation streamline, which is formed simultaneously. It can be proved that the stagnation streamline formed in this way is unique.


Author(s):  
Sergiy Shevchenko ◽  
Oksana Dovgalyuk ◽  
Dmytro Danylchenko ◽  
Olena Rubanenko ◽  
Stanislav Fedorchuk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document