Real-Time Test System for Electro-Hydraulic Proportional Control Loop of Automatic Transmission

Author(s):  
Jiaming Zhong ◽  
Gang Tao ◽  
Jiashun Liu
2013 ◽  
Vol 321-324 ◽  
pp. 453-459
Author(s):  
Jian He ◽  
Zhe Chen ◽  
Yun Han Luo

Thermal poling could make centrosymmetric fused silica optical fibers generate second-order nonlinearity effect and linear electooptic effect. In order to investigate the influence of thermal poling parameters on linear electooptic effect, a real-time test system, which mainly consists of an all polarization maintaining fiber Mach-Zehnder interferometer, has been utilized to monitor the whole thermal poling process in fibers. The processing parameters in thermal poling, such as applied poling voltage, poling duration and temperature, have been measured in real time. Based on those measurements, their influence on the linear electrooptic effect has been discussed. Experiment results show that the linear electrooptic coefficient would increase when a stronger electric field is applied on fibers. Considering the anti-high-voltage breakdown capability of fibers, a DC voltage from 3KV to 4KV is suitable for polarization in thermal poling. When using 3KV, the optimum poling duration is about 16 minutes and the best temperature for thermal poling is around 190°C. Keywords: electro-optic effect, poled fiber, thermal poling, real time test system, fiber optic interferometer


Author(s):  
Qiu Ying-feng ◽  
Liu Guang-bin ◽  
Liu Chao-shan ◽  
Guo Jin-ku
Keyword(s):  
The Real ◽  

2015 ◽  
Vol 738-739 ◽  
pp. 734-737
Author(s):  
Zhi Yi Zhang ◽  
Yan Zhao ◽  
Yu Shuang Liu

In the ground test of inertial navigation algorithm, it is a typical method to use a turntable with high speed and precision to rebuild the air angular motion. As to the difficulty of building a big overload environment in which to get more real output of accelerometers, the method of using current injection to control its output is put forward in this article. Correlation models are established to control the current source card. At the end of the article, there is a brief analysis about real-time performance and precision of current injection.


2020 ◽  
Vol 13 (2) ◽  
pp. 126-140
Author(s):  
Jing Gan ◽  
Xiaobin Fan ◽  
Zeng Song ◽  
Mingyue Zhang ◽  
Bin Zhao

Background: The power performance of an electric vehicle is the basic parameter. Traditional test equipment, such as the expensive chassis dynamometer, not only increases the cost of testing but also makes it impossible to measure all the performance parameters of an electric vehicle. Objective: A set of convenient, efficient and sensitive power measurement system for electric vehicles is developed to obtain the real-time power changes of hub-motor vehicles under various operating conditions, and the dynamic performance parameters of hub-motor vehicles are obtained through the system. Methods: Firstly, a set of on-board power test system is developed by using virtual instrument (Lab- VIEW). This test system can obtain the power changes of hub-motor vehicles under various operating conditions in real-time and save data in real-time. Then, the driving resistance of hub-motor vehicles is analyzed, and the power performance of hub-motor vehicles is studied in depth. The power testing system is proposed to test the input power of both ends of the driving motor, and the chassis dynamometer is combined to test so that the output efficiency of the driving motor can be easily obtained without disassembly. Finally, this method is used to carry out the road test and obtain the vehicle dynamic performance parameters. Results: The real-time current, voltage and power, maximum power, acceleration time and maximum speed of the vehicle can be obtained accurately by using the power test system in the real road experiment. Conclusion: The maximum power required by the two motors reaches about 9KW, and it takes about 20 seconds to reach the maximum speed. The total power required to maintain the maximum speed is about 7.8kw, and the maximum speed is 62km/h. In this article, various patents have been discussed.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2471
Author(s):  
Tommaso Bradde ◽  
Samuel Chevalier ◽  
Marco De Stefano ◽  
Stefano Grivet-Talocia ◽  
Luca Daniel

This paper develops a predictive modeling algorithm, denoted as Real-Time Vector Fitting (RTVF), which is capable of approximating the real-time linearized dynamics of multi-input multi-output (MIMO) dynamical systems via rational transfer function matrices. Based on a generalization of the well-known Time-Domain Vector Fitting (TDVF) algorithm, RTVF is suitable for online modeling of dynamical systems which experience both initial-state decay contributions in the measured output signals and concurrently active input signals. These adaptations were specifically contrived to meet the needs currently present in the electrical power systems community, where real-time modeling of low frequency power system dynamics is becoming an increasingly coveted tool by power system operators. After introducing and validating the RTVF scheme on synthetic test cases, this paper presents a series of numerical tests on high-order closed-loop generator systems in the IEEE 39-bus test system.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1924
Author(s):  
Patrick Seeling ◽  
Martin Reisslein ◽  
Frank H. P. Fitzek

The Tactile Internet will require ultra-low latencies for combining machines and humans in systems where humans are in the control loop. Real-time and perceptual coding in these systems commonly require content-specific approaches. We present a generic approach based on deliberately reduced number accuracy and evaluate the trade-off between savings achieved and errors introduced with real-world data for kinesthetic movement and tele-surgery. Our combination of bitplane-level accuracy adaptability with perceptual threshold-based limits allows for great flexibility in broad application scenarios. Combining the attainable savings with the relatively small introduced errors enables the optimal selection of a working point for the method in actual implementations.


2004 ◽  
Vol 50 (2) ◽  
pp. 306-312 ◽  
Author(s):  
Stefan S Biel ◽  
Andreas Nitsche ◽  
Andreas Kurth ◽  
Wolfgang Siegert ◽  
Muhsin Özel ◽  
...  

Abstract Background: We studied electron microscopy (EM) as an appropriate test system for the detection of polyomavirus in urine samples from bone marrow transplant patients. Methods: We evaluated direct EM, ultracentrifugation (UC) before EM, and solid-phase immuno-EM (SPIEM). The diagnostic accuracy of EM was studied by comparison with a real-time PCR assay on 531 clinical samples. Results: The detection rate of EM was increased by UC and SPIEM. On 531 clinical urine samples, the diagnostic sensitivity of EM was 47% (70 of 149) with a specificity of 100%. We observed a linear relationship between viral genome concentration and the proportion of urine samples positive by EM, with a 50% probability for a positive EM result for urine samples with a polyomavirus concentration of 106 genome-equivalents (GE)/mL; the probability of a positive EM result was 0% for urine samples with <103 GE/mL and 100% for urine samples containing 109 GE/mL. Conclusions: UC/EM is rapid and highly specific for polyomavirus in urine. Unlike real-time PCR, EM has low sensitivity and cannot quantify the viral load.


Sign in / Sign up

Export Citation Format

Share Document