Time Optimal Trajectory Planning Based on Redundant Manipulator

Author(s):  
Chaoyang Ma ◽  
Yun Zhang ◽  
Shuo Cheng
2021 ◽  
Vol 11 (16) ◽  
pp. 7513
Author(s):  
Jong Ho Kim ◽  
Kyunghwan Choi ◽  
In Gwun Jang

Trajectory planning for a redundant manipulator is a classic problem. However, because it is difficult to precisely evaluate its maximum performance, an optimization method has been typically used. In this study, a novel time-optimal trajectory planning method for a redundant manipulator is proposed using the model predictive control (MPC) augmented by the maximum performance evaluation (MPE). First, the optimization formulation is expressed to evaluate the maximum performance of the distributed-actuation-mechanism-based three-revolute-joint manipulator (DAM-3R), which has a high level of redundancy, and the joint-actuation-mechanism-based three-revolute-joint manipulator (JAM-3R) for comparison. The optimization is conducted by linking the multibody dynamics analysis module and the optimization module. For time-optimal trajectory planning, the MPC problem is then formulated using mathematical performance models for the DAM-3R and JAM-3R based on the MPE results, which are considered as the upper bound of the manipulator performance at each end-effector position. To verify the proposed method, a point-to-point task with no predefined path is investigated. The simulation results show that the working time of the DAM-3R is 19.1% less than that of the JAM-3R. Moreover, the energy consumption for the DAM-3R is 45.0% lower than that for the JAM-3R by optimally utilizing the higher redundancy of the DAM-3R. Thus, it can be concluded that the proposed method is effective for time-optimal trajectory planning for redundant manipulators.


Author(s):  
Mingxing Yuan ◽  
Bin Yao ◽  
Dedong Gao ◽  
Xiaocong Zhu ◽  
Qingfeng Wang

Time optimal trajectory planning under various hard constraints plays a significant role in simultaneously meeting the requirements on high productivity and high accuracy in the fields of both machining tools and robotics. In this paper, the problem of time optimal trajectory planning is first formulated. A novel back and forward check algorithm is subsequently proposed to solve the minimum time feed-rate optimization problem. The basic idea of the algorithm is to search the feasible solution in the specified interval using the back or forward operations. Four lemmas are presented to illustrate the calculating procedure of optimal solution and the feasibility of the proposed algorithm. Both the elliptic curve and eight profile are used as case studies to verify the effectiveness of the proposed algorithm.


Author(s):  
Zhijun Chen ◽  
Feng Gao

Current studies on time-optimal trajectory planning centers on cases with fixed base and only one end-effector. However, the free-floating body and the multiple legs of the legged robot make the current methods inapplicable. This paper proposes a time-optimal trajectory planning method for six-legged robots. The model of the optimization problem for six-legged robots is built by considering the base and the end-effectors separately. Both the actuator constraints and the gait cycle constraints are taken into account. A novel two-step optimization method is proposed to solve the optimization problem. The first step solves the time-optimal trajectory of the body and the second step solves the time-optimal trajectory of the swinging legs. Finally, the method is applied to a six-parallel-legged robot and validated by experiments on the prototype. The results show that the velocity of the optimized gait is improved by 17.8% in contrast to the non-optimized one.


Sign in / Sign up

Export Citation Format

Share Document