Research on formalization of Domain-Specific Metamodeling Language based on first-order logic

Author(s):  
Tao Jiang ◽  
WenYun Zheng
10.29007/22x6 ◽  
2018 ◽  
Author(s):  
Sylvia Grewe ◽  
Sebastian Erdweg ◽  
Mira Mezini

Type systems for programming languages shall detect type errors in programs before runtime. To ensure that a type system meets this requirement, its soundness must be formally verified. We aim at automating soundness proofs of type systems to facilitate the development of sound type systems for domain-specific languages.Soundness proofs for type systems typically require induction. However, many of the proofs of individual induction cases only require first-order reasoning. For the development of our workbench Veritas, we build on this observation by combining automated first-order theorem provers such as Vampire with automated proof strategies specific to type systems. In this paper, we describe how we encode type soundness proofs in first-order logic using TPTP. We show how we use Vampire to prove the soundness of type systems for the simply-typed lambda calculus and for parts of a typed SQL. We report on which parts of the proofs are handled well by Vampire, and what parts work less well with our current approach.


Author(s):  
Carmen Chui ◽  
Michael Grüninger ◽  
Janette Wong

The near ubiquity of family relationship ontologies in the Semantic Web has brought on the question of whether any formal analysis has been done in this domain. This paper examines kinship relationships that are normally overlooked in formal analyses of domain-specific ontologies: how are such ontologies verified and validated? We draw inspiration from existing work done in anthropology, where attempts have been made to formally model kinship as atemporal algebraic models. Based on these algebraic models, we provide an ontology for kinship written in first-order logic and demonstrate how the ontology can be used to validate definitions found in Canadian legal laws and data collection documentation.


2009 ◽  
Vol 19 (12) ◽  
pp. 3091-3099 ◽  
Author(s):  
Gui-Hong XU ◽  
Jian ZHANG

Author(s):  
Tim Button ◽  
Sean Walsh

Chapters 6-12 are driven by questions about the ability to pin down mathematical entities and to articulate mathematical concepts. This chapter is driven by similar questions about the ability to pin down the semantic frameworks of language. It transpires that there are not just non-standard models, but non-standard ways of doing model theory itself. In more detail: whilst we normally outline a two-valued semantics which makes sentences True or False in a model, the inference rules for first-order logic are compatible with a four-valued semantics; or a semantics with countably many values; or what-have-you. The appropriate level of generality here is that of a Boolean-valued model, which we introduce. And the plurality of possible semantic values gives rise to perhaps the ‘deepest’ level of indeterminacy questions: How can humans pin down the semantic framework for their languages? We consider three different ways for inferentialists to respond to this question.


2020 ◽  
Author(s):  
Michał Walicki

Abstract Graph normal form, introduced earlier for propositional logic, is shown to be a normal form also for first-order logic. It allows to view syntax of theories as digraphs, while their semantics as kernels of these digraphs. Graphs are particularly well suited for studying circularity, and we provide some general means for verifying that circular or apparently circular extensions are conservative. Traditional syntactic means of ensuring conservativity, like definitional extensions or positive occurrences guaranteeing exsitence of fixed points, emerge as special cases.


1991 ◽  
Vol 15 (2) ◽  
pp. 123-138
Author(s):  
Joachim Biskup ◽  
Bernhard Convent

In this paper the relationship between dependency theory and first-order logic is explored in order to show how relational chase procedures (i.e., algorithms to decide inference problems for dependencies) can be interpreted as clever implementations of well known refutation procedures of first-order logic with resolution and paramodulation. On the one hand this alternative interpretation provides a deeper insight into the theoretical foundations of chase procedures, whereas on the other hand it makes available an already well established theory with a great amount of known results and techniques to be used for further investigations of the inference problem for dependencies. Our presentation is a detailed and careful elaboration of an idea formerly outlined by Grant and Jacobs which up to now seems to be disregarded by the database community although it definitely deserves more attention.


2019 ◽  
Vol 29 (8) ◽  
pp. 1311-1344 ◽  
Author(s):  
Lauri T Hella ◽  
Miikka S Vilander

Abstract We propose a new version of formula size game for modal logic. The game characterizes the equivalence of pointed Kripke models up to formulas of given numbers of modal operators and binary connectives. Our game is similar to the well-known Adler–Immerman game. However, due to a crucial difference in the definition of positions of the game, its winning condition is simpler, and the second player does not have a trivial optimal strategy. Thus, unlike the Adler–Immerman game, our game is a genuine two-person game. We illustrate the use of the game by proving a non-elementary succinctness gap between bisimulation invariant first-order logic $\textrm{FO}$ and (basic) modal logic $\textrm{ML}$. We also present a version of the game for the modal $\mu $-calculus $\textrm{L}_\mu $ and show that $\textrm{FO}$ is also non-elementarily more succinct than $\textrm{L}_\mu $.


Sign in / Sign up

Export Citation Format

Share Document