Hashing-based authentication for CAN bus and application to Denial-of-Service protection

Author(s):  
Olivier CROS ◽  
Gabriel CHENEVERT
Keyword(s):  
Can Bus ◽  
Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7069
Author(s):  
Jia-Ning Luo ◽  
Chang-Ming Wu ◽  
Ming-Hour Yang

The design of the Controller Area Network (CAN bus) did not account for security issues and, consequently, attacks often use external mobile communication interfaces to conduct eavesdropping, replay, spoofing, and denial-of-service attacks on a CAN bus, posing a risk to driving safety. Numerous studies have proposed CAN bus safety improvement techniques that emphasize modifying the original CAN bus method of transmitting frames. These changes place additional computational burdens on electronic control units cause the CAN bus to lose the delay guarantee feature. Consequently, we proposed a method that solves these compatibility and security issues. Simple and efficient frame authentication algorithms were used to prevent spoofing and replay attacks. This method is compatible with both CAN bus and CAN-FD protocols and has a lower operand when compared with other methods.


2018 ◽  
Vol 16 ◽  
pp. 47-52
Author(s):  
Mehmet Bozdal ◽  
Maulana Randa ◽  
Mohammad Samie ◽  
Ian Jennions

Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 1044
Author(s):  
Gianmarco Baldini

The evolution of modern automobiles to higher levels of connectivity and automatism has also increased the need to focus on the mitigation of potential cybersecurity risks. Researchers have proven in recent years that attacks on in-vehicle networks of automotive vehicles are possible and the research community has investigated various cybersecurity mitigation techniques and intrusion detection systems which can be adopted in the automotive sector. In comparison to conventional intrusion detection systems in large fixed networks and ICT infrastructures in general, in-vehicle systems have limited computing capabilities and other constraints related to data transfer and the management of cryptographic systems. In addition, it is important that attacks are detected in a short time-frame as cybersecurity attacks in vehicles can lead to safety hazards. This paper proposes an approach for intrusion detection of cybersecurity attacks in in-vehicle networks, which takes in consideration the constraints listed above. The approach is based on the application of an information entropy-based method based on a sliding window, which is quite efficient from time point of view, it does not require the implementation of complex cryptographic systems and it still provides a very high detection accuracy. Different entropy measures are used in the evaluation: Shannon Entropy, Renyi Entropy, Sample Entropy, Approximate Entropy, Permutation Entropy, Dispersion and Fuzzy Entropy. This paper evaluates the impact of the different hyperparameters present in the definition of entropy measures on a very large public data set of CAN-bus traffic with millions of CAN-bus messages with four different types of attacks: Denial of Service, Fuzzy Attack and two spoofing attacks related to RPM and Gear information. The sliding window approach in combination with entropy measures can detect attacks in a time-efficient way and with great accuracy for specific choices of the hyperparameters and entropy measures.


Author(s):  
Amit Sharma

Distributed Denial of Service attacks are significant dangers these days over web applications and web administrations. These assaults pushing ahead towards application layer to procure furthermore, squander most extreme CPU cycles. By asking for assets from web benefits in gigantic sum utilizing quick fire of solicitations, assailant robotized programs use all the capacity of handling of single server application or circulated environment application. The periods of the plan execution is client conduct checking and identification. In to beginning with stage by social affair the data of client conduct and computing individual user’s trust score will happen and Entropy of a similar client will be ascertained. HTTP Unbearable Load King (HULK) attacks are also evaluated. In light of first stage, in recognition stage, variety in entropy will be watched and malevolent clients will be recognized. Rate limiter is additionally acquainted with stop or downsize serving the noxious clients. This paper introduces the FAÇADE layer for discovery also, hindering the unapproved client from assaulting the framework.


Sign in / Sign up

Export Citation Format

Share Document