Geometric model-based joint angle selection criterion for force parameter identification & Decoupling control method of position and posture in shaft-hole assembly

Author(s):  
Junhe Wang ◽  
Yong Jiang ◽  
Song Lin ◽  
Fanxu Kong
2013 ◽  
Vol 21 (3) ◽  
pp. 298-307 ◽  
Author(s):  
Iván García-Herreros ◽  
Xavier Kestelyn ◽  
Julien Gomand ◽  
Ralph Coleman ◽  
Pierre-Jean Barre

2012 ◽  
Vol 150 ◽  
pp. 30-35
Author(s):  
Ze Bin Yang ◽  
Huang Qiu Zhu ◽  
Xiao Dong Sun ◽  
Tao Zhang

A novel decoupling control method based on neural networks inverse system is presented in this paper for a bearingless synchronous reluctance motor (BSRM) possessing the characteristics of multi-input-multi-output, nonlinearity, and strong coupling. The dynamic mathematical models are built, which are verified to be invertible. A controller based on neural network inverse is designed, which decouples the original nonlinear system to two linear position subsystems and an angular velocity subsystem. Furthermore, the linear control theory is applied to closed-loop synthesis to meet the desired performance. Simulation and experiment results show that the presented neural networks inverse control strategy can realize the dynamic decoupling of BSRM, and that the control system has fine dynamic and static performance.


Author(s):  
Marco Proverbio ◽  
François-Xavier Favre ◽  
Ian F. C. Smith

The goal of model-based structural identification is to find suitable values of parameters that affect structure behaviour. To this end, measurements are often compared with predictions of finiteelement models. Although residual minimization (RM) is a prominent methodology for structural identification, it provides wrong parameter identification when flawed model classes are adopted. Error-domain model falsification (EDMF) is an alternative methodology that helps identify candidate models – models that are compatible with behaviour measurements – among an initial model population. This study focuses on the comparison between RM and EDMF for the structural identification of a steel bridge in Exeter (UK). Advantages and limitations of both methodologies are discussed with reference to parameter identification and prognosis tasks such as quantification of reserve capacity. Results show that the employment of RM may lead to wrong identification and unsafe estimations of reserve capacity.


2017 ◽  
Vol 40 (7) ◽  
pp. 2227-2239 ◽  
Author(s):  
Haoping Wang ◽  
Qiankun Qu ◽  
Yang Tian

In this paper, a nonlinear observer based sliding mode control (NOSMC) approach for air-path and a model-based observer for oxygen concentration in the diesel engine equipped with a variable geometry turbocharger and exhaust gas recirculation is introduced. We propose a less conservative observer design technique for Lipschitz nonlinear systems using Ricatti equations. The observer gains are obtained by solving the linear matrix inequality (LMI). Then a robust nonlinear control method, sliding mode control is applied for the states of intake and exhaust manifold pressure and compressor mass flow rate for the sake of the minimization of emissions. The proposed NOSMC controller is applied on a mean value model of turbocharged diesel engine. Besides this, a model-based observer is developed to estimate the oxygen concentration in the intake and exhaust manifolds owing to its significance in reducing emissions of diesel engines. The validation and efficiency of the proposed method are demonstrated by AMESim and Matlab/Simulink co-simulation results.


2007 ◽  
Vol 45 (4) ◽  
pp. 375-385 ◽  
Author(s):  
Chou-Ching K. Lin ◽  
Ming-Shaung Ju ◽  
Hang-Shing Cheng

2020 ◽  
Vol 61 (2) ◽  
pp. 25-34 ◽  
Author(s):  
Yibo Li ◽  
Hang Li ◽  
Xiaonan Guo

In order to improve the accuracy of rice transplanter model parameters, an online parameter identification algorithm for the rice transplanter model based on improved particle swarm optimization (IPSO) algorithm and extended Kalman filter (EKF) algorithm was proposed. The dynamic model of the rice transplanter was established to determine the model parameters of the rice transplanter. Aiming at the problem that the noise matrices in EKF algorithm were difficult to select and affected the best filtering effect, the proposed algorithm used the IPSO algorithm to optimize the noise matrices of the EKF algorithm in offline state. According to the actual vehicle tests, the IPSO-EKF was used to identify the cornering stiffness of the front and rear tires online, and the identified cornering stiffness value was substituted into the model to calculate the output data and was compared with the measured data. The simulation results showed that the accuracy of parameter identification for the rice transplanter model based on the IPSO-EKF algorithm was improved, and established an accurate rice transplanter model.


Sign in / Sign up

Export Citation Format

Share Document