Parameter identification for fractional fractal diffusion model based on experimental data

2019 ◽  
Vol 29 (8) ◽  
pp. 083134 ◽  
Author(s):  
Xiu Yang ◽  
Xiaoyun Jiang ◽  
Jianhong Kang
2011 ◽  
Vol 486 ◽  
pp. 262-265
Author(s):  
Amit Kohli ◽  
Mudit Sood ◽  
Anhad Singh Chawla

The objective of the present work is to simulate surface roughness in Computer Numerical Controlled (CNC) machine by Fuzzy Modeling of AISI 1045 Steel. To develop the fuzzy model; cutting depth, feed rate and speed are taken as input process parameters. The predicted results are compared with reliable set of experimental data for the validation of fuzzy model. Based upon reliable set of experimental data by Response Surface Methodology twenty fuzzy controlled rules using triangular membership function are constructed. By intelligent model based design and control of CNC process parameters, we can enhance the product quality, decrease the product cost and maintain the competitive position of steel.


Author(s):  
Stefan Hartmann ◽  
Rose Rogin Gilbert

AbstractIn this article, we follow a thorough matrix presentation of material parameter identification using a least-square approach, where the model is given by non-linear finite elements, and the experimental data is provided by both force data as well as full-field strain measurement data based on digital image correlation. First, the rigorous concept of semi-discretization for the direct problem is chosen, where—in the first step—the spatial discretization yields a large system of differential-algebraic equation (DAE-system). This is solved using a time-adaptive, high-order, singly diagonally-implicit Runge–Kutta method. Second, to study the fully analytical versus fully numerical determination of the sensitivities, required in a gradient-based optimization scheme, the force determination using the Lagrange-multiplier method and the strain computation must be provided explicitly. The consideration of the strains is necessary to circumvent the influence of rigid body motions occurring in the experimental data. This is done by applying an external strain determination tool which is based on the nodal displacements of the finite element program. Third, we apply the concept of local identifiability on the entire parameter identification procedure and show its influence on the choice of the parameters of the rate-type constitutive model. As a test example, a finite strain viscoelasticity model and biaxial tensile tests applied to a rubber-like material are chosen.


Author(s):  
Marco Proverbio ◽  
François-Xavier Favre ◽  
Ian F. C. Smith

The goal of model-based structural identification is to find suitable values of parameters that affect structure behaviour. To this end, measurements are often compared with predictions of finiteelement models. Although residual minimization (RM) is a prominent methodology for structural identification, it provides wrong parameter identification when flawed model classes are adopted. Error-domain model falsification (EDMF) is an alternative methodology that helps identify candidate models – models that are compatible with behaviour measurements – among an initial model population. This study focuses on the comparison between RM and EDMF for the structural identification of a steel bridge in Exeter (UK). Advantages and limitations of both methodologies are discussed with reference to parameter identification and prognosis tasks such as quantification of reserve capacity. Results show that the employment of RM may lead to wrong identification and unsafe estimations of reserve capacity.


2016 ◽  
Vol 78 (8-3) ◽  
Author(s):  
Aliyu Bello A. ◽  
Arshad Ahmad ◽  
Adnan Ripin ◽  
Olagoke Oladokun

The moisture contents of powders is an important parameter that affects the quality and commercial value of spray dried products. The utility of predicted moisture content values from two droplet drying models were compared with experimental data for spray dried pineapple juice, using the Ranz-Marshal and its modified variants for the heat and mass transfer correlations. The droplet Diffusion model, using the Zhifu correlation, gave estimates with errors of about 8% at 165 oC, 9% at 171 oC, 26% at 179 oC and 2% at 185 oC. The Ranz-Marshal correlation also gave comparable results with this model while results using the Downing and modified Ranz-Marshall correlations widely diverged. The Energy balance model predicted completely dried juice particles, and short drying times, in contrast to the experimental data. The small error sizes of the Diffusion model improves on the wide error sizes of an earlier process model, making is useful as a first approximation choice, for spray drier design and simulation, especially for juices under comparable operating conditions.


2004 ◽  
Vol 10 (4) ◽  
pp. 293-300 ◽  
Author(s):  
P. Pennacchi ◽  
A. Vania

Model-based diagnostic techniques can be used successfully in the health analysis of rotormachinery. Unfortunately, a poor accuracy of the model of the fully assembled machine, as well as noise in the signals and errors in the evaluation of the experimental vibrations that are caused only by the impending fault, can affect the accuracy of the fault identifications. This can make it difficult to identify the type of actual fault as well as to evaluate with care its severity and position. This article shows some techniques that have been developed by the authors to measure the accuracy of the results obtained with model-based identification methods aimed to diagnose faults in rotating machines. In this article, the results obtained by means of the analysis of experimental data collected in a power plant are described. Finally, the capabilities of the developed methods are shown and discussed.


2017 ◽  
Vol 23 (7) ◽  
pp. 955-965 ◽  
Author(s):  
Jian WANG ◽  
Pui-Lam NG ◽  
Weishan WANG ◽  
Jinsheng DU ◽  
Jianyong SONG

Under coastal or marine conditions, chloride erosion is the major accelerating factor of reinforcement corrosion. Therefore, it is of vital importance to investigate the chloride diffusion model. Research reveals that the concrete stress state has great influence on chloride diffusion; therefore a stress influence coefficient was incorporated in chloride diffusion coefficient model by many researchers. By referring to the experimental data from eight different researchers, the law between stress influence coefficient and concrete stress ratio is studied in detail, and equations relating the stress influence coefficient with the concrete stress ratio are established. Compared with three typical existing groups of equations, it is found that the proposed equations give the most accurate estim.ation of the stress influence coefficient. Hence, the proposed equations can be adopted to improve the valuation of chloride diffusion coefficient, and a modified chloride diffusion model is put forward. Three groups of experimental data are used to validate the modified chloride diffusion model, which is shown to be reasonable and having high prediction accuracy.


Sign in / Sign up

Export Citation Format

Share Document