High Performance Variable Precision Multiplier and Accumulator Unit for Digital Filter Applications

Author(s):  
K Neelima ◽  
Satyam
Electronics ◽  
2018 ◽  
Vol 8 (1) ◽  
pp. 29 ◽  
Author(s):  
Marijan Jurgo ◽  
Romualdas Navickas

In recent years number of Internet of Things (IoT) services and devices is growing and Internet of Vehicles (IoV) technologies are emerging. Multiband transceiver with high performance frequency synthesisers should be used to support a multitude of existing and developing wireless standards. In this paper noise sources of an all-digital frequency synthesiser are discussed through s-domain model of frequency synthesisers, and the impact of noise induced by main blocks of synthesisers to the overall phase noise of frequency synthesisers is analysed. Requirements for time to digital converter (TDC), digitally controlled oscillator (DCO) and digital filter suitable for all-digital frequency synthesiser for IoT and IoV applications are defined. The structure of frequency synthesisers, which allows us to meet defined requirements, is presented. Its main parts are 2D Vernier TDC based on gated ring oscillators, which can achieve resolution close to 1 ps; multi core LC-tank DCO, whose tuning range is 4.3–5.4 GHz when two cores are used and phase noise is −116.4 dBc/Hz at 1 MHz offset from 5.44 GHz carrier; digital filter made of proportional and integral gain stages and additional infinite impulse response filter stages. Such a structure allows us to achieve a synthesiser’s in-band phase noise lower than −100 dBc/Hz, out-of-band phase noise equal to −134.0 dBc/Hz and allows us to set a synthesiser to type-I or type-II and change its order from first to sixth.


Author(s):  
R.F. Woods ◽  
J.V. McCanny ◽  
S.C. Knowles ◽  
O.C. McNally

1987 ◽  
Vol 107 (2) ◽  
pp. 175-182 ◽  
Author(s):  
Hiroshi Osawa ◽  
Shigenori Kinoshita ◽  
Takayoshi Nakano

Author(s):  
Ljiljana Milic

The role of filtering in sampling-rate conversion has been considered in Chapter II. The importance of filtering arises from the fact that the sampling theorem should be respected for all the sampling rates of the system at hand. Filters are required to bandlimit the spectrum of the signal to the prescribed bandwidth in accordance with the actual sampling rate. In sampling rate conversion systems, filters are used in decimation to suppress aliasing and in interpolation to remove imaging. Since an ideal frequency response cannot be achieved, the performance of the system for sampling rate conversion is mainly determined by filter characteristics. Obviously, an appropriate filter should enable the sampling rate conversion with minimal signal distortion. The main advantage of a multirate system is the computational efficiency, and therefore, a decimator (interpolator) that implements a high-order digital filter could not be tolerated. The specific role of a digital filter in sampling rate conversion demands high-performance filtering with the lowest possible complexity. To reach this goal one has to concentrate first on the choice of the appropriate design specifications in order to provide minimal signal distortion. Secondly, the multirate filter is to be designed in a manner to satisfy the prescribed characteristics and to provide a low-complexity implementation structure. In this chapter, we discus first the spectral characteristics of decimators and interpolators and introduce three commonly used types of filter specifications. In the sequel, we review the MATLAB functions that are appropriate for the design of FIR and IIR filters to satisfy the specifications. An approach to computation of aliasing characteristics of decimators is given and illustrated by examples. This chapter considers also the analysis of sampling rate conversion for band-pass signals. Chapter concludes with MATLAB exercises for individual study.


Sign in / Sign up

Export Citation Format

Share Document