Soft Error Detection Technique in Multi-threaded Architectures Using Control-Flow Monitoring

Author(s):  
Mohammad Maghsoudloo ◽  
Hamid R. Zarandi ◽  
Saadat Pour Mozafari ◽  
Navid Khoshavi

2014 ◽  
Vol 61 (6) ◽  
pp. 3236-3243 ◽  
Author(s):  
L. Parra ◽  
A. Lindoso ◽  
M. Portela-Garcia ◽  
L. Entrena ◽  
B. Du ◽  
...  


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Seyyed Amir Asghari ◽  
Okyay Kaynak ◽  
Hassan Taheri

Electronic equipment operating in harsh environments such as space is subjected to a range of threats. The most important of these is radiation that gives rise to permanent and transient errors on microelectronic components. The occurrence rate of transient errors is significantly more than permanent errors. The transient errors, or soft errors, emerge in two formats: control flow errors (CFEs) and data errors. Valuable research results have already appeared in literature at hardware and software levels for their alleviation. However, there is the basic assumption behind these works that the operating system is reliable and the focus is on other system levels. In this paper, we investigate the effects of soft errors on the operating system components and compare their vulnerability with that of application level components. Results show that soft errors in operating system components affect both operating system and application level components. Therefore, by providing endurance to operating system level components against soft errors, both operating system and application level components gain tolerance.





Author(s):  
O. Goloubeva ◽  
M. Rebaudengo ◽  
M. Sonza Reorda ◽  
M. Violante


2013 ◽  
Vol 22 (08) ◽  
pp. 1350067 ◽  
Author(s):  
SEYYED AMIR ASGHARI ◽  
ATENA ABDI ◽  
OKYAY KAYNAK ◽  
HASSAN TAHERI ◽  
HOSSEIN PEDRAM

Electronic equipment used in harsh environments such as space has to cope with many threats. One major threat is the intensive radiation which gives rise to Single Event Upsets (SEU) that lead to control flow errors and data errors. In the design of embedded systems to be used in space, the use of radiation tolerant equipment may therefore be a necessity. However, even if the higher cost of such a choice is not a problem, the efficiency of such equipment is lower than the COTS equipment. Therefore, the use of COTS with appropriate measures to handle the threats may be the optimal solution, in which a simultaneous optimization is carried out for power, performance, reliability and cost. In this paper, a novel method is presented for control flow error detection in multitask environments with less memory and performance overheads as compared to other methods seen in the literature.



2021 ◽  
Author(s):  
Jalal Mohammad Chikhe

Due to the reduction of transistor size, modern circuits are becoming more sensitive to soft errors. The development of new techniques and algorithms targeting soft error detection are important as they allow designers to evaluate the weaknesses of the circuits at an early stage of the design. The project presents an optimized implementation of soft error detection simulator targeting combinational circuits. The developed simulator uses advanced switch level models allowing the injection of soft errors caused by single event-transient pulses with magnitudes lesser than the logic threshold. The ISCAS'85 benchmark circuits are used for the simulations. The transients can be injected at drain, gate, or inputs of logic gate. This gives clear indication of the importance of transient injection location on the fault coverage. Furthermore, an algorithm is designed and implemented in this work to increase the performance of the simulator. This optimized version of the simulator achieved an average speed-up of 310 compared to the non-algorithm based version of the simulator.







Sign in / Sign up

Export Citation Format

Share Document