Real-time obstacle detection for Unmanned Surface Vehicle

Author(s):  
Han Wang ◽  
Zhuo Wei ◽  
Sisong Wang ◽  
Chek Seng Ow ◽  
Kah Tong Ho ◽  
...  
2021 ◽  
Vol 1910 (1) ◽  
pp. 012002
Author(s):  
Chao He ◽  
Jiayuan Gong ◽  
Yahui Yang ◽  
Dong Bi ◽  
Jianpin Lan ◽  
...  

2021 ◽  
pp. 1-18
Author(s):  
R.S. Rampriya ◽  
Sabarinathan ◽  
R. Suganya

In the near future, combo of UAV (Unmanned Aerial Vehicle) and computer vision will play a vital role in monitoring the condition of the railroad periodically to ensure passenger safety. The most significant module involved in railroad visual processing is obstacle detection, in which caution is obstacle fallen near track gage inside or outside. This leads to the importance of detecting and segment the railroad as three key regions, such as gage inside, rails, and background. Traditional railroad segmentation methods depend on either manual feature selection or expensive dedicated devices such as Lidar, which is typically less reliable in railroad semantic segmentation. Also, cameras mounted on moving vehicles like a drone can produce high-resolution images, so segmenting precise pixel information from those aerial images has been challenging due to the railroad surroundings chaos. RSNet is a multi-level feature fusion algorithm for segmenting railroad aerial images captured by UAV and proposes an attention-based efficient convolutional encoder for feature extraction, which is robust and computationally efficient and modified residual decoder for segmentation which considers only essential features and produces less overhead with higher performance even in real-time railroad drone imagery. The network is trained and tested on a railroad scenic view segmentation dataset (RSSD), which we have built from real-time UAV images and achieves 0.973 dice coefficient and 0.94 jaccard on test data that exhibits better results compared to the existing approaches like a residual unit and residual squeeze net.


2014 ◽  
Vol 31 (3) ◽  
pp. 281-293 ◽  
Author(s):  
Baozhi Jia ◽  
Rui Liu ◽  
Ming Zhu

Author(s):  
Fredy Martinez ◽  
Edwar Jacinto ◽  
Fernando Martinez

This paper presents a low cost strategy for real-time estimation of the position of obstacles in an unknown environment for autonomous robots. The strategy was intended for use in autonomous service robots, which navigate in unknown and dynamic indoor environments. In addition to human interaction, these environments are characterized by a design created for the human being, which is why our developments seek morphological and functional similarity equivalent to the human model. We use a pair of cameras on our robot to achieve a stereoscopic vision of the environment, and we analyze this information to determine the distance to obstacles using an algorithm that mimics bacterial behavior. The algorithm was evaluated on our robotic platform demonstrating high performance in the location of obstacles and real-time operation.


2021 ◽  
Vol 336 ◽  
pp. 07004
Author(s):  
Ruoyu Fang ◽  
Cheng Cai

Obstacle detection and target tracking are two major issues for intelligent autonomous vehicles. This paper proposes a new scheme to achieve target tracking and real-time obstacle detection of obstacles based on computer vision. ResNet-18 deep learning neural network is utilized for obstacle detection and Yolo-v3 deep learning neural network is employed for real-time target tracking. These two trained models can be deployed on an autonomous vehicle equipped with an NVIDIA Jetson Nano motherboard. The autonomous vehicle moves to avoid obstacles and follow tracked targets by camera. Adjusting the steering and movement of the autonomous vehicle according to the PID algorithm during the movement, therefore, will help the proposed vehicle achieve stable and precise tracking.


Sign in / Sign up

Export Citation Format

Share Document