Using a magnetic continuously variable transmission for synchronization of wind turbine generators under a variable wind speed

Author(s):  
Sergey N. Udalov ◽  
Andrey A. Achitaev ◽  
Alexander G. Pristup ◽  
Boris M. Bochenkov ◽  
Yuriy V. Pankratz
Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6807
Author(s):  
Henok Ayele Behabtu ◽  
Thierry Coosemans ◽  
Maitane Berecibar ◽  
Kinde Anlay Fante ◽  
Abraham Alem Kebede ◽  
...  

The risk of oscillation of grid-connected wind turbine generators (WTGs) is well known, making it all the more important to understand the characteristics of different WTGs and analyze their performance so that the problems’ causes are identified and resolved. While many studies have evaluated the performance of grid-connected WTGs, most lack clarity and precision in the modeling and simulation techniques used. Moreover, most of the literature focuses on a single mode of operation of WTGs to analyze their performances. Therefore, this paper updates the literature by considering the different operating conditions for WTGs. Using MATLAB/SIMULINK it expands the evaluation to the full range of vulnerabilities of WTGs: from the wind turbine to grid connection. A network representing grid-connected squirrel-cage induction generator (SCIG) and doubly-fed induction generator (DFIG) wind turbines are selected for simulation. The performances of SCIG and DFIG wind turbines are evaluated in terms of their energy generation capacity during constant rated wind speed, variable wind speed, and ability of fault-ride through during dynamic system transient operating conditions. The simulation results show the performance of DFIG is better than SCIG in terms of its energy generation capacity during variable wind speed conditions and active and reactive power control capability during steady-state and transient operating conditions. As a result, DFIG wind turbine is more suitable for large-scale wind power plants connected to weak utility grid applications than SCIG.


2021 ◽  
pp. 0309524X2110351
Author(s):  
Abeba Debru ◽  
Mulu Bayray ◽  
Marta Molinas

The objective of this paper was to assess the performance of the Adama-II Wind Farm in comparison to the feasibility study. Using 1-year mast data, the site potential was reassessed by WAsP software and the performance of wind turbine generators was assessed by 2 years of SCADA data. The obtained mean annual wind speed and power density were 7.75 m/s, and 462 W/m2 while in the feasibility study, 9.55 m/s, and 634.6 W/m2, which resulted in 18.8%, and 27.1% deviations respectively. The prevailing and secondary wind directions obtained were ENE and NE with 35.7% and 19.1% while, in the feasibility study, ENE with 36.5% and E with 17.3%. From the SCADA data, the Capacity factor, Annual Energy Production (AEP), and Availability of wind turbines were determined as 30.5%, 398 GWh, and 95.1%. The reasons for the deviation were difference in long-term correction data and weather conditions during study period.


2020 ◽  
Vol 57 (5) ◽  
pp. 61-72
Author(s):  
D. Bezrukovs ◽  
V. Bezrukovs ◽  
Vl. Bezrukovs ◽  
M. Konuhova ◽  
S. Aniskevich

AbstractThe authors perform a comparative analysis of the efficiency of two types of low-power wind energy conversion systems with horizontal and vertical axis in the meteorological conditions of Latvia. The analysis is based on long-term wind speed measurements over the period of two years conducted by a network of 22 observation stations at the height of 10 m above the ground. The study shows that in the conditions of Latvia wind turbines with a horizontal axis are expected to work with greater efficiency than similar installations with a vertical axis. The paper presents the models of the spatial distribution of average wind speed, Weibull wind speed frequency distribution parameters and the values of the expected operational efficiency for small wind turbine generators. The modelling results are presented in the form of colour contour maps. Overall, the results of the study can serve as a tool for forecasting annual energy production and for estimating the feasibility of commercial use of wind energy at the height of 10 m in the territory of Latvia.


Sign in / Sign up

Export Citation Format

Share Document