Optimization of Duration of Ultrashort Pulse Exciting the Spacecraft Power Supply Bus

Author(s):  
Rustam R. Gazizov ◽  
Ruslan R. Gazizov ◽  
Timur T. Gazizov
2020 ◽  
Vol 8 (4) ◽  
pp. 019-025
Author(s):  
Rustam R. Gazizov ◽  
◽  
Ruslan R. Gazizov ◽  
Timur T. Gazizov ◽  
M. N. Kalinina ◽  
...  

Приведены принципиальная схема и параметры поперечных сечений макета силовой шины электропитания космического аппарата. Проведена оптимизация длительности воздействующего сверхкороткого импульса генетическим алгоритмом с целью минимизации максимального напряжения вдоль шины. Выполнено по 10 запусков для каждого набора особей и поколений. Приведены графики сходимости результатов для каждого набора параметров генетического алгоритма. Результаты подобных исследований могут быть полезны для оценки наихудшего случая воздействия.


2019 ◽  
Vol 15 (3) ◽  
pp. 279-288 ◽  
Author(s):  
Yong Liu ◽  
Xiujuan Wu ◽  
Huanghai Kong

Background: Electrochemical machining (ECM) is a non-traditional machining method for the metal material based on the principle of anode electrochemical dissolution which has been used in micro/nano fabrication with advantages as not influenced by materials intensity and hardness, no residual stress and no heat treatment born on the surface of the workpiece. Several researches and applications have shown that the surface quality can be improved effectively during the electrochemical machining by using ultrashort pulse power supply. Method: This paper presents a potential of electrochemical machining at the nanometer scale. First, a transient charging double layer mathematical model is developed to describe electrochemical nanostructuring of metallic materials with ultrashort (nanosecond) voltage pulses. And then, by using finite element method (FEM), the analysis model of electrochemical interface between poles is established to give a more realistic analysis of the comparison of transient currents at different separations between the tool and workpiece. Second, a nanoscale electrode is an essential tool in electrochemical nanostructuring. In this paper, electrodes with diameters of several ten to hundred nanometers are successfully prepared by the liquid membrane electrochemical etching. Finally, by using the nanometer scale electrodes above and the ultrashort pulse power supply, several nanostructures with physical dimension of several hundred nanometers are fabricated on nickelbased superalloys. Results: Using the optimal machining parameters, a tool electrode with 230 nm in diameter is obtained from the initial tungsten rod radius of 100 μm. By using 0.05 M H2SO4 solution, the pulse generator with 1μs in period, 100 ns in pulse on-time and 4 V in voltage, a micro/nano groove with the depth of 150 nm and maximum entrance width of 3 μm is obtained. Conclusion: Nanoscale electrodes with diameters of several ten to hundred nanometers is obtained successfully demonstrating that the liquid membrane electrochemical etching is a very effective method to fabricate nanoscale electrode. Several nanostructures with physical dimension of several hundred nanometers can be fabricated successfully demonstrating that ECM with ultrashort pulses is a highly promising nanostructuring technology.


Author(s):  
A. Tanaka ◽  
M. Yamaguchi ◽  
T. Hirano

The plasma polymerization replica method and its apparatus have been devised by Tanaka (1-3). We have published several reports on its application: surface replicas of biological and inorganic specimens, replicas of freeze-fractured tissues and metal-extraction replicas with immunocytochemical markers.The apparatus for plasma polymerization consists of a high voltage power supply, a vacuum chamber containing a hydrocarbon gas (naphthalene, methane, ethylene), and electrodes of an anode disk and a cathode of the specimen base. The surface replication by plasma polymerization in negative glow phase on the cathode was carried out by gassing at 0.05-0.1 Torr and glow discharging at 1.5-3 kV D.C. Ionized hydrocarbon molecules diffused into complex surface configurations and deposited as a three-dimensionally polymerized film of 1050 nm in thickness.The resulting film on the complex surface had uniform thickness and showed no granular texture. Since the film was chemically inert, resistant to heat and mecanically strong, it could be treated with almost any organic or inorganic solvents.


2019 ◽  
Vol 2 (1) ◽  
pp. 8-16 ◽  
Author(s):  
P. A. Khlyupin ◽  
G. N. Ispulaeva

Introduction: The co-authors provide an overview of the main types of wind turbines and power generators installed into wind energy devices, as well as advanced technological solutions. The co-authors have identified the principal strengths and weaknesses of existing wind power generators, if applied as alternative energy sources. The co-authors have proven the need to develop an algorithm for the selection of a wind generator-based autonomous power supply system in the course of designing windmill farms in Russia. Methods: The co-authors have analyzed several types of wind turbines and power generators. Results and discussions: The algorithm for the selection of a wind generator-based autonomous power supply system is presented as a first approximation. Conclusion: The emerging algorithm enables designers to develop an effective wind generator-based autonomous power supply system.


2019 ◽  
Vol 5 (1) ◽  
pp. 35-45
Author(s):  
Markus Dwiyanto Tobi ◽  
Alimuddin Mappa

The role of the power supply device is to produce, process and distribute energy sources. Telecommunication equipment can only operate if it has continuous supply. Therefore, to maintain the continuity of the supply, a UPS (Uninterruptable Power Supply) device system is needed so that the supply to the Essential Load device will remain available so that continuity will be maintained. This research designs and proposes how a series of automatic redundant switch systems on UPS to ensure the availability of power supply for the main equipment of telecommunications systems. The Auto switch circuit is designed to have 3 (three) working stages which will trigger the relay driver as control circuit, namely the normal working condition of the contactor input K1 is present, the input condition is zero (lost), and the input condition is present. This system can automatically supply power to telecommunications equipment.


2020 ◽  
Vol 20 (3) ◽  
pp. 209-215
Author(s):  
Hyun-Seok Song ◽  
Min-Ho Son ◽  
Sung-Ju Yoo ◽  
Do-Hyun Jung ◽  
Boo-Hee Park

Sign in / Sign up

Export Citation Format

Share Document