scholarly journals A New Constant Switching Frequency Model Predictive Control Method for Grid Connected 5-level ANPC Inverter with Capacitors Sensor-less Voltage Balancing

Author(s):  
Mostafa Abarzadeh ◽  
Nathan Weise ◽  
Liuchen Chang ◽  
Kamal Al-Haddad
Author(s):  
Rahul Jaiswal ◽  
◽  
Anshul Agarwal ◽  
Richa Negi ◽  
Abhishek Vikram ◽  
...  

This article represents the torque ripple performance of modular multilevel converter (MMC) fed brushless dc (BLDC) motor using different current control technique. For reducing the ripple current in BLDC motor, a phase-modulated model predictive control (PMMPC) technique has been proposed. The stator ripple current is almost negligible using PMMPC. This PMMPC current control method is a significant minimization of torque ripple in BLDC motor. A comparative torque ripple behaviour of MMC fed BLDC motor has been done using phase-modulated model predictive control, model predictive control (MPC) and proportional integral (PI) control at different switching frequency. It has been observed that a PMMPC current control technique is more efficient as compared to the MPC as well as PI current control technique. It has also been observed that the torque ripple performance is improved while using PMMPC as compared to the MPC and PI controller. Simulation results have been verified with the help of experimental result and these results are obtained in good agreement to the simulated results.


2020 ◽  
Vol 10 (4) ◽  
pp. 265-279
Author(s):  
Arman Farhadi ◽  
Amir Akbari ◽  
Ali Zakerian ◽  
Mohammad Tavakoli Bina

In this paper, an improved model predictive control method is proposed to drive an induction motor fed by a three-level matrix converter. The main objective of this paper is to present a novel method to increase the switching frequency at a constant sampling time. Also, it is analytically discussed that increasing the switching frequency not only can decrease the motor current ripples, but it can also significantly reduce its torque ripples. Finally, this study demonstrates that reducing the motor current ripple will improve the quality of the supply current. To be the accurate model and validate the motor drive system, a co-simulation method, which is a combination of FLUX and MATLAB software packages, is employed to find the simulation results. The findings indicate that the proposed method diminishes the THD of the supply current up to 26% approximately. Furthermore, increasing the switching frequency results in the torque ripple reduction by up to 10% almost.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Hao Li ◽  
Shuo Chen ◽  
Xiang Wu ◽  
Guojun Tan

A model predictive control method to reduce the common-mode voltage (MPC-RCMV) with constant switching frequency for PMSM drives is proposed in this paper. Four nonzero VVs are adopted in future control period and the switching sequence is designed to ensure the switching frequency is fixed and equal to the control frequency. By substituting the finite-control nonzero voltage vectors in the current predictive model, a current predictive error space vector diagram is obtained to determine the adopted four VVs. The duty ratio calculating method for the selected four VVs is studied. Compared with the conventional MPC-RCMV method, the current and torque ripples are greatly reduced and the switching frequency is fixed. The simulation and experiment results validate the effectiveness of the proposed method.


Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 199
Author(s):  
Jaime A. Rohten ◽  
Javier E. Muñoz ◽  
Esteban S. Pulido ◽  
José J. Silva ◽  
Felipe A. Villarroel ◽  
...  

Several control strategies have been proposed with the aim to get a desired behavior in the power converter variables. The most employed control techniques are linear control, nonlinear control based on linear and nonlinear feedback, and predictive control. The controllers associated with linear and nonlinear algorithms usually have a fixed switching frequency, featuring a defined spectrum given by the pulse width modulation (PWM) or space vector modulation (SVM) time period. On the other hand, finite set model predictive control (FS-MPC) is known to present a variable switching frequency that results too high for high power applications, increasing losses, reducing the switches lifetime and, therefore, limiting its application. This paper proposes a predictive control approach using a very low sampling frequency, allowing the use of predictive control in high power applications. The proposed method is straightforward to understand, is simple to implement, and can be computed with off-the-shelf digital systems. The main advantage of the proposed control algorithm comes from the combination of the model predictive control and the SVM technique, drawing the principal benefits of both methods. The provided experimental results are satisfactory, displaying the nature of space vector-based schemes but at the same time the fast response as expected in predictive control.


2020 ◽  
Vol 194 ◽  
pp. 02003
Author(s):  
Li Jianlin ◽  
Tan Yuliang

In a large-scale wind power generation system, active power fluctuation caused by random wind speed will have a serious impact on the power grid. In order to limit the power fluctuation that wind farm transmits to the power grid and protect the energy storage battery, this paper has proposed a model predictive control method of hybrid energy storage by optimizing the objective function and constraint conditions. Firstly, the mathematical model of predictive control method has been established in a wind power system with hybrid energy storage. Then, with the goal of minimum energy storage output and maximum charging-discharging capacity of the super-capacitor, the predictive control process has been optimized. Meanwhile, the constraint on the output power of the battery has been dynamically changed to reduce its charging-discharging switching frequency, and the model predictive control strategy of the hybrid energy storage has been formed. Finally, compared with the model prediction control method of single energy storage, based on a wind farm data, the simulation results show that the proposed method can smooth wind power fluctuation, reduce the time that the power does not satisfy the fluctuation requirements, ensure the capability of the super-capacitor, and reduce the charging-discharging switching frequency of the energy storage battery.


Sign in / Sign up

Export Citation Format

Share Document