A General Constant-Switching-Frequency Model-Predictive Control of Multilevel Converters With Quasi-PS-PWM/LS-PWM Output

2020 ◽  
Vol 35 (11) ◽  
pp. 12429-12441
Author(s):  
Dehong Zhou ◽  
Zhongyi Quan ◽  
Yunwei Li ◽  
Jianxiao Zou
Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 199
Author(s):  
Jaime A. Rohten ◽  
Javier E. Muñoz ◽  
Esteban S. Pulido ◽  
José J. Silva ◽  
Felipe A. Villarroel ◽  
...  

Several control strategies have been proposed with the aim to get a desired behavior in the power converter variables. The most employed control techniques are linear control, nonlinear control based on linear and nonlinear feedback, and predictive control. The controllers associated with linear and nonlinear algorithms usually have a fixed switching frequency, featuring a defined spectrum given by the pulse width modulation (PWM) or space vector modulation (SVM) time period. On the other hand, finite set model predictive control (FS-MPC) is known to present a variable switching frequency that results too high for high power applications, increasing losses, reducing the switches lifetime and, therefore, limiting its application. This paper proposes a predictive control approach using a very low sampling frequency, allowing the use of predictive control in high power applications. The proposed method is straightforward to understand, is simple to implement, and can be computed with off-the-shelf digital systems. The main advantage of the proposed control algorithm comes from the combination of the model predictive control and the SVM technique, drawing the principal benefits of both methods. The provided experimental results are satisfactory, displaying the nature of space vector-based schemes but at the same time the fast response as expected in predictive control.


2021 ◽  
Author(s):  
Apparao Dekka

THIS dissertation addresses the technical challenges associated with the operation and control of high-power modular multilevel converters. To improve the performance of modular multilevel converter (MMC), a generalized three-phase mathematical model with common-mode voltage (CMV) is proposed. By using the proposed mathematical model, the magnitude of circulating currents, capacitors voltage ripple, and the ripple in DC-link current during balanced and unbalanced operating conditions can be minimized. The modulation scheme and switching frequency are directly affected the output power quality and the performance of the converter and control method. In this dissertation, a novel sampled average and space vector modulation scheme is proposed. These modulation schemes are suitable to control the MMC with any number of submodules (without modifications), operates at low switching frequency, minimizes the ripple in output current and voltage harmonic distortion, and reduces the output filter size. For reliable operation of MMC, the voltage balancing among submodules is mandatory. This dissertation proposes a generalized single-stage balancing approach with reduced current sensors to control the MMC. The proposed balancing approach is suitable to implement with both phase-shifted and level-shifted pulse width modulation schemes. With the proposed approach, it is also possible to control the MMC with half-bridge and three level flying capacitor submodules. Also, an improved balancing approach often referred as the dual-stage balancing approach is proposed to minimize the voltage harmonic distortion and device power losses. This dissertation also proposes a direct model predictive control (D-MPC) approach to minimize the ripple in submodule capacitors voltage. To implement D-MPC approach, a discrete-time model of MMC with CMV is proposed. With the use of proposed model, the D-MPC approach does not require a cost function to minimize the circulating currents. The computational complexity is one of the major issues in the implementation of D-MPC approach for MMC. In this dissertation, a novel reduced computational MPC approaches named as dual-stage D-MPC and indirect model predictive control (I-MPC) approach are proposed. These approaches significantly minimize the computational complexity and, improve the voltage and current waveform quality while operating at the low switching frequency. Finally, the simulation and experimental studies are presented to validate the dynamic and steady-state performance of proposed methodologies. Index Terms • Modular Multilevel Converters. • Capacitors Voltage Balancing. • Pulse Width Modulation Schemes. • Circulating Currents. • Capacitors Voltage Ripple • Direct Model Predictive Control. • Dual-Stage Direct Model Predictive Control. • Indirect Model Predictive Control. • Total Harmonic Distortion.


2021 ◽  
Author(s):  
Apparao Dekka

THIS dissertation addresses the technical challenges associated with the operation and control of high-power modular multilevel converters. To improve the performance of modular multilevel converter (MMC), a generalized three-phase mathematical model with common-mode voltage (CMV) is proposed. By using the proposed mathematical model, the magnitude of circulating currents, capacitors voltage ripple, and the ripple in DC-link current during balanced and unbalanced operating conditions can be minimized. The modulation scheme and switching frequency are directly affected the output power quality and the performance of the converter and control method. In this dissertation, a novel sampled average and space vector modulation scheme is proposed. These modulation schemes are suitable to control the MMC with any number of submodules (without modifications), operates at low switching frequency, minimizes the ripple in output current and voltage harmonic distortion, and reduces the output filter size. For reliable operation of MMC, the voltage balancing among submodules is mandatory. This dissertation proposes a generalized single-stage balancing approach with reduced current sensors to control the MMC. The proposed balancing approach is suitable to implement with both phase-shifted and level-shifted pulse width modulation schemes. With the proposed approach, it is also possible to control the MMC with half-bridge and three level flying capacitor submodules. Also, an improved balancing approach often referred as the dual-stage balancing approach is proposed to minimize the voltage harmonic distortion and device power losses. This dissertation also proposes a direct model predictive control (D-MPC) approach to minimize the ripple in submodule capacitors voltage. To implement D-MPC approach, a discrete-time model of MMC with CMV is proposed. With the use of proposed model, the D-MPC approach does not require a cost function to minimize the circulating currents. The computational complexity is one of the major issues in the implementation of D-MPC approach for MMC. In this dissertation, a novel reduced computational MPC approaches named as dual-stage D-MPC and indirect model predictive control (I-MPC) approach are proposed. These approaches significantly minimize the computational complexity and, improve the voltage and current waveform quality while operating at the low switching frequency. Finally, the simulation and experimental studies are presented to validate the dynamic and steady-state performance of proposed methodologies. Index Terms • Modular Multilevel Converters. • Capacitors Voltage Balancing. • Pulse Width Modulation Schemes. • Circulating Currents. • Capacitors Voltage Ripple • Direct Model Predictive Control. • Dual-Stage Direct Model Predictive Control. • Indirect Model Predictive Control. • Total Harmonic Distortion.


2018 ◽  
Vol 4 (3 suppl. 1) ◽  
pp. 279-288 ◽  
Author(s):  
Zhixun Ma ◽  
Yuanzhe Zhao ◽  
Yan Sun ◽  
Zhiming Liao ◽  
Guobin Lin

Aim: This paper proposes constant switching frequency model predictive control (CSF-MPC) for a permanent magnet linear synchronous motor (PMLSM) to improve the steady state and dynamic performance of the drive system. Methods: The conventional finite control set model predictive control (FCS-MPC) can be combined with a pulse width modulation (PWM) modulator due to an effective cost function optimization algorithm which is from the idea of dichotomy. In the algorithm, all the voltage vectors in the constrained vector plane are dynamically selected and calculated through iteration. The whole system including control algorithm and mathematical model of PMLSM is built and tested by simulation using MATLAB/Simulink. Besides, the control algorithm is tested in the FPGA controller through FPGA-in-the-Loop test. Results: With the modern digital processors or control hardware such as digital signal processors (DSPs) or field programmable gate arrays (FPGAs), the algorithm can be easily executed in less than 10-micro second. This is very proper for industrial applications. The proposed control algorithm is implemented on FPGA and tested by FPGA-in-the-Loop method. The proposed control algorithm can improve the performance of drive system greatly. Conclusion: The proposed CSF-MPC for PMLSM not only keeps the same dynamic transient performance as FCS-MPC but also greatly decreases the torque ripple in steady state. Furthermore, CSF-MPC is also robust to parameter variations. Simulation and FPGA-in-the-Loop results illustrate that CSF-MPC has an attractive performance for PMLSM drives.


Sign in / Sign up

Export Citation Format

Share Document