IoT-Enabled Smart City Waste Management using Machine Learning Analytics

Author(s):  
Taimur Bakhshi ◽  
Muhammad Ahmed
2019 ◽  
Vol 9 (3) ◽  
pp. 38 ◽  
Author(s):  
M. ADAT DEEPALI ◽  
V. MANE DESHMUKH PRASHANT ◽  
S. K. TILEKAR ◽  
B. P. LAGAONKAR ◽  
◽  
...  
Keyword(s):  

2020 ◽  
Vol 167 ◽  
pp. 1950-1959 ◽  
Author(s):  
Sonali Dubey ◽  
Pushpa Singh ◽  
Piyush Yadav ◽  
Krishna Kant Singh

2021 ◽  
pp. 1-13 ◽  
Author(s):  
Bhabendu Kumar Mohanta ◽  
Debasish Jena ◽  
Niva Mohapatra ◽  
Somula Ramasubbareddy ◽  
Bharat S. Rawal

Smart city has come a long way since the development of emerging technology like Information and communications technology (ICT), Internet of Things (IoT), Machine Learning (ML), Block chain and Artificial Intelligence. The Intelligent Transportation System (ITS) is an important application in a rapidly growing smart city. Prediction of the automotive accident severity plays a very crucial role in the smart transportation system. The main motive behind this research is to determine the specific features which could affect vehicle accident severity. In this paper, some of the classification models, specifically Logistic Regression, Artificial Neural network, Decision Tree, K-Nearest Neighbors, and Random Forest have been implemented for predicting the accident severity. All the models have been verified, and the experimental results prove that these classification models have attained considerable accuracy. The paper also explained a secure communication architecture model for secure information exchange among all the components associated with the ITS. Finally paper implemented web base Message alert system which will be used for alert the users through smart IoT devices.


Author(s):  
Xin (Shane) Wang ◽  
Jun Hyun (Joseph) Ryoo ◽  
Neil Bendle ◽  
Praveen K. Kopalle

2021 ◽  
Vol 13 (9) ◽  
pp. 4716
Author(s):  
Moustafa M. Nasralla

To develop sustainable rehabilitation systems, these should consider common problems on IoT devices such as low battery, connection issues and hardware damages. These should be able to rapidly detect any kind of problem incorporating the capacity of warning users about failures without interrupting rehabilitation services. A novel methodology is presented to guide the design and development of sustainable rehabilitation systems focusing on communication and networking among IoT devices in rehabilitation systems with virtual smart cities by using time series analysis for identifying malfunctioning IoT devices. This work is illustrated in a realistic rehabilitation simulation scenario in a virtual smart city using machine learning on time series for identifying and anticipating failures for supporting sustainability.


Work ◽  
2021 ◽  
pp. 1-12
Author(s):  
Zhang Mengqi ◽  
Wang Xi ◽  
V.E. Sathishkumar ◽  
V. Sivakumar

BACKGROUND: Nowadays, the growth of smart cities is enhanced gradually, which collects a lot of information and communication technologies that are used to maximize the quality of services. Even though the intelligent city concept provides a lot of valuable services, security management is still one of the major issues due to shared threats and activities. For overcoming the above problems, smart cities’ security factors should be analyzed continuously to eliminate the unwanted activities that used to enhance the quality of the services. OBJECTIVES: To address the discussed problem, active machine learning techniques are used to predict the quality of services in the smart city manages security-related issues. In this work, a deep reinforcement learning concept is used to learn the features of smart cities; the learning concept understands the entire activities of the smart city. During this energetic city, information is gathered with the help of security robots called cobalt robots. The smart cities related to new incoming features are examined through the use of a modular neural network. RESULTS: The system successfully predicts the unwanted activity in intelligent cities by dividing the collected data into a smaller subset, which reduces the complexity and improves the overall security management process. The efficiency of the system is evaluated using experimental analysis. CONCLUSION: This exploratory study is conducted on the 200 obstacles are placed in the smart city, and the introduced DRL with MDNN approach attains maximum results on security maintains.


Sign in / Sign up

Export Citation Format

Share Document