scholarly journals Sustainable Virtual Reality Patient Rehabilitation Systems with IoT Sensors Using Virtual Smart Cities

2021 ◽  
Vol 13 (9) ◽  
pp. 4716
Author(s):  
Moustafa M. Nasralla

To develop sustainable rehabilitation systems, these should consider common problems on IoT devices such as low battery, connection issues and hardware damages. These should be able to rapidly detect any kind of problem incorporating the capacity of warning users about failures without interrupting rehabilitation services. A novel methodology is presented to guide the design and development of sustainable rehabilitation systems focusing on communication and networking among IoT devices in rehabilitation systems with virtual smart cities by using time series analysis for identifying malfunctioning IoT devices. This work is illustrated in a realistic rehabilitation simulation scenario in a virtual smart city using machine learning on time series for identifying and anticipating failures for supporting sustainability.

Author(s):  
Md Mamunur Rashid ◽  
Joarder Kamruzzaman ◽  
Mohammad Mehedi Hassan ◽  
Tasadduq Imam ◽  
Steven Gordon

In recent years, the widespread deployment of the Internet of Things (IoT) applications has contributed to the development of smart cities. A smart city utilizes IoT-enabled technologies, communications and applications to maximize operational efficiency and enhance both the service providers’ quality of services and people’s wellbeing and quality of life. With the growth of smart city networks, however, comes the increased risk of cybersecurity threats and attacks. IoT devices within a smart city network are connected to sensors linked to large cloud servers and are exposed to malicious attacks and threats. Thus, it is important to devise approaches to prevent such attacks and protect IoT devices from failure. In this paper, we explore an attack and anomaly detection technique based on machine learning algorithms (LR, SVM, DT, RF, ANN and KNN) to defend against and mitigate IoT cybersecurity threats in a smart city. Contrary to existing works that have focused on single classifiers, we also explore ensemble methods such as bagging, boosting and stacking to enhance the performance of the detection system. Additionally, we consider an integration of feature selection, cross-validation and multi-class classification for the discussed domain, which has not been well considered in the existing literature. Experimental results with the recent attack dataset demonstrate that the proposed technique can effectively identify cyberattacks and the stacking ensemble model outperforms comparable models in terms of accuracy, precision, recall and F1-Score, implying the promise of stacking in this domain.


2020 ◽  
Vol 12 (14) ◽  
pp. 5595 ◽  
Author(s):  
Ana Lavalle ◽  
Miguel A. Teruel ◽  
Alejandro Maté ◽  
Juan Trujillo

Fostering sustainability is paramount for Smart Cities development. Lately, Smart Cities are benefiting from the rising of Big Data coming from IoT devices, leading to improvements on monitoring and prevention. However, monitoring and prevention processes require visualization techniques as a key component. Indeed, in order to prevent possible hazards (such as fires, leaks, etc.) and optimize their resources, Smart Cities require adequate visualizations that provide insights to decision makers. Nevertheless, visualization of Big Data has always been a challenging issue, especially when such data are originated in real-time. This problem becomes even bigger in Smart City environments since we have to deal with many different groups of users and multiple heterogeneous data sources. Without a proper visualization methodology, complex dashboards including data from different nature are difficult to understand. In order to tackle this issue, we propose a methodology based on visualization techniques for Big Data, aimed at improving the evidence-gathering process by assisting users in the decision making in the context of Smart Cities. Moreover, in order to assess the impact of our proposal, a case study based on service calls for a fire department is presented. In this sense, our findings will be applied to data coming from citizen calls. Thus, the results of this work will contribute to the optimization of resources, namely fire extinguishing battalions, helping to improve their effectiveness and, as a result, the sustainability of a Smart City, operating better with less resources. Finally, in order to evaluate the impact of our proposal, we have performed an experiment, with non-expert users in data visualization.


Work ◽  
2021 ◽  
pp. 1-12
Author(s):  
Zhang Mengqi ◽  
Wang Xi ◽  
V.E. Sathishkumar ◽  
V. Sivakumar

BACKGROUND: Nowadays, the growth of smart cities is enhanced gradually, which collects a lot of information and communication technologies that are used to maximize the quality of services. Even though the intelligent city concept provides a lot of valuable services, security management is still one of the major issues due to shared threats and activities. For overcoming the above problems, smart cities’ security factors should be analyzed continuously to eliminate the unwanted activities that used to enhance the quality of the services. OBJECTIVES: To address the discussed problem, active machine learning techniques are used to predict the quality of services in the smart city manages security-related issues. In this work, a deep reinforcement learning concept is used to learn the features of smart cities; the learning concept understands the entire activities of the smart city. During this energetic city, information is gathered with the help of security robots called cobalt robots. The smart cities related to new incoming features are examined through the use of a modular neural network. RESULTS: The system successfully predicts the unwanted activity in intelligent cities by dividing the collected data into a smaller subset, which reduces the complexity and improves the overall security management process. The efficiency of the system is evaluated using experimental analysis. CONCLUSION: This exploratory study is conducted on the 200 obstacles are placed in the smart city, and the introduced DRL with MDNN approach attains maximum results on security maintains.


Author(s):  
Hector Rico-Garcia ◽  
Jose-Luis Sanchez-Romero ◽  
Antonio Jimeno-Morenilla ◽  
Hector Migallon-Gomis

The development of the smart city concept and the inhabitants’ need to reduce travel time, as well as society’s awareness of the reduction of fuel consumption and respect for the environment, lead to a new approach to the classic problem of the Travelling Salesman Problem (TSP) applied to urban environments. This problem can be formulated as “Given a list of geographic points and the distances between each pair of points, what is the shortest possible route that visits each point and returns to the departure point?” Nowadays, with the development of IoT devices and the high sensoring capabilities, a large amount of data and measurements are available, allowing researchers to model accurately the routes to choose. In this work, the purpose is to give solution to the TSP in smart city environments using a modified version of the metaheuristic optimization algorithm TLBO (Teacher Learner Based Optimization). In addition, to improve performance, the solution is implemented using a parallel GPU architecture, specifically a CUDA implementation.


Author(s):  
Rajan R. ◽  
Venkata Subramanian Dayanandan ◽  
Shankar P. ◽  
Ranganath Tngk

A smart city aims at developing an ecosystem wherein the citizens will have instant access to amenities required for a healthy and safe living. Since the mission of smart city is to develop and integrate many facilities, it is envisaged that there is a need for making the information available instantly for right use of such infrastructure. So, there exists a need to design and implement a world-class physical security measures which acts as a bellwether to protect people life from physical security threats. It is a myth that if placing adequate number of cameras alone would enhance physical security controls in smart cities. There is a need for designing and building comprehensive physical security controls, based on the principles of “layered defense-in-depth,” which integrates all aspects of physical security controls. This chapter will review presence of existing physical security technology controls for smart cities in line with the known security threats and propose the need for an AI-enabled physical security premise.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1342 ◽  
Author(s):  
Yong Fan ◽  
Litang Hu ◽  
Hongliang Wang ◽  
Xin Liu

Pumping tests are very important means for investigating aquifer properties; however, interpreting the data using common analytical solutions become invalid in complex aquifer systems. The paper aims to explore the potential of machine learning methods in retrieving the pumping tests information in a field site in the Democratic Republic of Congo. A newly planned mining site with a pumping test of three pumping wells and 28 observation wells over one month was chosen to analyze the significance of machine learning methods in the pumping test analysis. Widely used machine learning methods, including correlation, cluster, time-series analysis, artificial neural network (ANN), support vector machine (SVR), random forest (RF) method, and linear regression, are all used in this study. Correlation and cluster analyses among wells provide visual pictures of possible hydraulic connections. The pathway with the best permeability ranges from the depth of 250 m to 350 m. Time-series analysis perfectly captured changes of drawdowns within the three pumping wells. The RF method is found to have the higher accuracy and the lower sensitivity to model parameters than ANN and SVR methods. The coupling of the linear regressive model and analytical solutions is applied to estimate hydraulic conductivities. The results found that ML methods can significantly and effectively improve our understanding of pumping tests by revealing inherent information hidden in those tests.


Sign in / Sign up

Export Citation Format

Share Document