The Excess Carrier Lifetime in P-Type HgCdTe Measured by Photoconductive Decay

Author(s):  
R. Fastow ◽  
Y. Nemirovsky
2007 ◽  
Vol 46 (8A) ◽  
pp. 5057-5061 ◽  
Author(s):  
Masashi Kato ◽  
Masahiko Kawai ◽  
Tatsuhiro Mori ◽  
Masaya Ichimura ◽  
Shingo Sumie ◽  
...  

2012 ◽  
Vol 51 (2R) ◽  
pp. 028006 ◽  
Author(s):  
Masashi Kato ◽  
Yoshinori Matsushita ◽  
Masaya Ichimura ◽  
Tomoaki Hatayama ◽  
Takeshi Ohshima

2012 ◽  
Vol 111 (11) ◽  
pp. 113104 ◽  
Author(s):  
M. W. Shura ◽  
V. Wagener ◽  
J. R. Botha ◽  
M. C. Wagener

2010 ◽  
Vol 645-648 ◽  
pp. 207-210 ◽  
Author(s):  
Yoshinori Matsushita ◽  
Masashi Kato ◽  
Masaya Ichimura ◽  
Tomoaki Hatayama ◽  
Takeshi Ohshima

We measured the excess carrier lifetimes in as-grown and electron irradiated p-type 4H-SiC epitaxial layers with the microwave photoconductivity decay (-PCD) method. The carrier lifetime becomes longer with excitation density for the as-grown epilayer. This dependence suggests that e ≥h for the dominant recombination center, where e andh are capture cross sections for electrons and holes, respectively. In contrast, the carrier lifetime does not depend on the excitation density for the sample irradiated with electrons at an energy of 160 keV and a dose of 1×1017 cm-2. This may be due to the fact that recombination centers with e <<h were introduced by the electron irradiation or due to the fact that the acceptor concentration was decreased significantly by the irradiation.


2012 ◽  
Vol 51 ◽  
pp. 028006 ◽  
Author(s):  
Masashi Kato ◽  
Yoshinori Matsushita ◽  
Masaya Ichimura ◽  
Tomoaki Hatayama ◽  
Takeshi Ohshima

2008 ◽  
Vol 600-603 ◽  
pp. 1187-1190 ◽  
Author(s):  
Q. Jon Zhang ◽  
Charlotte Jonas ◽  
Joseph J. Sumakeris ◽  
Anant K. Agarwal ◽  
John W. Palmour

DC characteristics of 4H-SiC p-channel IGBTs capable of blocking -12 kV and conducting -0.4 A (-100 A/cm2) at a forward voltage of -5.2 V at 25°C are demonstrated for the first time. A record low differential on-resistance of 14 mW×cm2 was achieved with a gate bias of -20 V indicating a strong conductivity modulation in the p-type drift region. A moderately doped current enhancement layer grown on the lightly doped drift layer effectively reduces the JFET resistance while maintains a high carrier lifetime for conductivity modulation. A hole MOS channel mobility of 12.5 cm2/V-s at -20 V of gate bias was measured with a MOS threshold voltage of -5.8 V. The blocking voltage of -12 kV was achieved by Junction Termination Extension (JTE).


2013 ◽  
Vol 440 ◽  
pp. 82-87 ◽  
Author(s):  
Mohammad Jahangir Alam ◽  
Mohammad Ziaur Rahman

A comparative study has been made to analyze the impact of interstitial iron in minority carrier lifetime of multicrystalline silicon (mc-Si). It is shown that iron plays a negative role and is considered very detrimental for minority carrier recombination lifetime. The analytical results of this study are aligned with the spatially resolved imaging analysis of iron rich mc-Si.


2001 ◽  
Vol 45 (12) ◽  
pp. 1973-1978 ◽  
Author(s):  
Mohamed Hilali ◽  
Abasifreke Ebong ◽  
Ajeet Rohatgi ◽  
Daniel L Meier

Sign in / Sign up

Export Citation Format

Share Document