gate bias
Recently Published Documents


TOTAL DOCUMENTS

734
(FIVE YEARS 138)

H-INDEX

35
(FIVE YEARS 4)

Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1485
Author(s):  
Masaya Fukai ◽  
Noriyuki Urakami ◽  
Yoshio Hashimoto

Ternary Ta2NiSe5 is a novel electronic material having the property of an excitonic insulator at room temperature. The electrical properties of Ta2NiSe5 have not been elucidated in detail. We discuss the electronic properties in Ta2NiSe5 films and the formation of heterojunctions. Hall effect measurements showed p-type conductivity. The activation energies estimated from the temperature dependence of the carrier concentration were seen to be 0.17 eV and 0.12 eV, at approximately 300 and 400 K, respectively. It was observed that carrier generation behavior changes at the critical temperature of the excitonic insulator state (328 K). The temperature dependence of the Hall mobility below the critical temperature nearly follows the bell-shaped curves for conventional semiconductor materials. A MoS2/Ta2NiSe5 van der Waals heterojunction was fabricated using the transfer method. Rectification characteristics, which depend on the gate bias voltage, were obtained. The barrier height at the MoS2/Ta2NiSe5 heterointerface and the on/off ratio could be modulated by applying a gate bias voltage, suggesting that the carrier transport was exhibited in band-to-band flow. Our demonstration suggests that the knowledge of Ta2NiSe5 increased as an electronic material, and diode performance was successfully achieved for the electronic device applications.


Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 954
Author(s):  
Sungsik Lee

In this paper, we present an empirical modeling procedure to capture gate bias dependency of amorphous oxide semiconductor (AOS) thin-film transistors (TFTs) while considering contact resistance and disorder effects at room temperature. From the measured transfer characteristics of a pair of TFTs where the channel layer is an amorphous In-Ga-Zn-O (IGZO) AOS, the gate voltage-dependent contact resistance is retrieved with a respective expression derived from the current–voltage relation, which follows a power law as a function of a gate voltage. This additionally allows the accurate extraction of intrinsic channel conductance, in which a disorder effect in the IGZO channel layer is embedded. From the intrinsic channel conductance, the characteristic energy of the band tail states, which represents the degree of channel disorder, can be deduced using the proposed modeling. Finally, the obtained results are also useful for development of an accurate compact TFT model, for which a gate bias-dependent contact resistance and disorder effects are essential.


2021 ◽  
Vol 11 (20) ◽  
pp. 9402
Author(s):  
Jin-Fa Chang ◽  
Yo-Sheng Lin

In this paper, we demonstrate a low-loss and high-linearity DC-38 GHz CMOS SPDT switch for 5G multi-band communications in 0.18 μm CMOS. Traveling-wave matching (CLCL network) is used for the output-port (ports 2 and 3) matching and isolation enhancement, while π-matching (CLC matching) is adopted for the input-port (port 1) matching. Positive/negative gate-bias is adopted for linearity enhancement because larger Pin (i.e., AC signal with larger negative Vin) is required to conduct the off-state series switch transistor. Negative-body bias is used for insertion-loss reduction because the off-state series switch transistor is closer to an open state. The SPDT switch achieves insertion loss of 0.4–1.4 dB, 3.6–4.3 dB, and 4.5–5.9 dB, respectively, for DC-6 GHz, 21–29 GHz, and 31–38 GHz. Moreover, the SPDT switch achieves isolation of 37.5–59.4 dB, 25.7–28.7 dB, and 24.3–25.2 dB, respectively, for DC-6 GHz, 21–29 GHz, and 31–38 GHz. At 28 GHz, the SPDT switch achieves remarkable input 1-dB compression point (IP1dB) of 25.6 dBm, close to the simulated one (28 dBm). To the authors’ knowledge, this is one of the best IP1dB results ever reported for millimeter-wave (mm-wave) SPDT switches.


2021 ◽  
Vol 16 (2) ◽  
pp. 1-6
Author(s):  
Carlos Augusto Bergfeld Mori ◽  
Paula Ghedini Der Agopian ◽  
João Antonio Martino

In this work, we further investigate the operation of the BESOI (Back-Enhanced Silicon-On Insulator) Dual-Technology FET, analyzing not only its behavior as a p-type Tunnel-FET when a negative back bias is applied to the struc-ture, but also as an nMOS when a positive back bias is ap-plied. The working principle is based on the generation of a channel of either holes or electrons by the back gate electric field, which can then be depleted through the front gate bias. TCAD device simulation was used for the proof of concept.


2021 ◽  
Author(s):  
Meng-Jiao Lu ◽  
Feng-Zao Chen ◽  
Jin Hu ◽  
Hong Zhou ◽  
Guangxu Chen ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document