Internal Fault Analysis and Optimization Design of Main Protection Scheme for Large Condenser

Author(s):  
Binchao Zhao ◽  
Lin Gui ◽  
Yudun Li ◽  
Kai Wang ◽  
Huamin Niu ◽  
...  
2015 ◽  
Vol 713-715 ◽  
pp. 950-953
Author(s):  
Ya Jie Li ◽  
Jian Cheng Tan ◽  
Shu Xian Zhang

When fault distance is greater than a certain value, attenuation of high frequency fault signal over the line is greater than what the DC line boundary is subject to. To sensitively detect a fault and improve the reliability of UHVDC (Ultra High Voltage Direct Current) transmission line protection, a new protection scheme based on wavelet based direction element is proposed, where directional element and attenuation of high frequency energy are used to identify an internal fault. Extensive simulation results show that the proposed protection scheme is able to sensitively detect high impedance faults, identify the faulty pole.


Author(s):  
Anderson Egberto Cavalcante Salles ◽  
Luciano Sales Barros ◽  
Gabriel P. de Oliveira ◽  
Daniel Barbosa ◽  
Camila Mara V. Barros

2021 ◽  
pp. 223-236
Author(s):  
Sankarshan Durgaprasad ◽  
Shreya Nagaraja ◽  
Sangeeta Modi

2012 ◽  
Vol 27 (3) ◽  
pp. 1583-1591 ◽  
Author(s):  
Ying Zhang ◽  
Nengling Tai ◽  
Bin Xu

Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1814
Author(s):  
Tao Zheng ◽  
Xinhui Yang ◽  
Xingchao Guo ◽  
Xingguo Wang ◽  
Chengqi Zhang

Through the analysis of the recovery inrush current generated by the external fault removal of the converter transformer, it is pointed out that the zero-sequence current caused by the recovery inrush may result in the saturation of the neutral current transformer (CT), whose measurement distortion contributes to the mis-operation of zero-sequence differential current protection. In this paper, a new scheme of zero-sequence differential current protection based on waveform correlation is proposed. By analyzing the characteristics of zero-sequence current under internal fault, external fault and external fault removal, the waveform correlation of the zero-sequence current measured at the terminal of the transformer and the zero-sequence current measured at the neutral point of the transformer is used for identification. The polarity of the CT is selected to guarantee the zero-sequence currents at the terminal and neutral point of the transformer exhibit a "ride through" characteristic under external fault, then the waveform similarity is high, and the correlation coefficient is positive. On the other hand, when internal fault occurs, zero-sequence current waveforms on both sides differ from each other largely, and the correlation coefficient is negative. Through a large number of simulations verified by PSCAD/EMTDC, this criterion can accurately identify internal and external faults, exempt from effects of the recovery inrush. Moreover, it presents certain ability for CT anti-saturation.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 220 ◽  
Author(s):  
Thai-Thanh Nguyen ◽  
Woon-Gyu Lee ◽  
Hak-Man Kim ◽  
Hyung Yang

The uses of high-temperature superconducting (HTS) cables pose a challenge of power system protection since the impedance of the HTS cable is varied during fault conditions. The protection systems should be designed properly to ensure the reliability and stability of the whole system. This paper presents a fault analysis of the co-axial HTS cable in the mesh system and proposes a coordinated protection system. In the proposed protection system, the main protection is the differential current relay whereas the backup protections are the overcurrent and directional overcurrent relays. The normal and abnormal relay operations are considered to analyze the transient fault current in the HTS cable and evaluate the performance of the proposed coordinated protection system. Characteristics of cable impedances and temperatures under various fault conditions are presented. The proposed protection scheme is validated by the simulation in the PSCAD/EMTDC program. Simulation results show that the coordinated protection scheme could successfully protect the HTS cables in both normal and abnormal relay operations.


Sign in / Sign up

Export Citation Format

Share Document