scholarly journals Explainable Sleep Stage Classification with Multimodal Electrophysiology Time-series*

Author(s):  
Charles A. Ellis ◽  
Rongen Zhang ◽  
Darwin A. Carbajal ◽  
Robyn L. Miller ◽  
Vince D. Calhoun ◽  
...  
Author(s):  
Stanislas Chambon ◽  
Mathieu N. Galtier ◽  
Pierrick J. Arnal ◽  
Gilles Wainrib ◽  
Alexandre Gramfort

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Zhihong Cui ◽  
Xiangwei Zheng ◽  
Xuexiao Shao ◽  
Lizhen Cui

Sleep stage classification plays an important role in the diagnosis of sleep-related diseases. However, traditional automatic sleep stage classification is quite challenging because of the complexity associated with the establishment of mathematical models and the extraction of handcrafted features. In addition, the rapid fluctuations between sleep stages often result in blurry feature extraction, which might lead to an inaccurate assessment of electroencephalography (EEG) sleep stages. Hence, we propose an automatic sleep stage classification method based on a convolutional neural network (CNN) combined with the fine-grained segment in multiscale entropy. First, we define every 30 seconds of the multichannel EEG signal as a segment. Then, we construct an input time series based on the fine-grained segments, which means that the posterior and current segments are reorganized as an input containing several segments and the size of the time series is decided based on the scale chosen depending on the fine-grained segments. Next, each segment in this series is individually put into the designed CNN and feature maps are obtained after two blocks of convolution and max-pooling as well as a full-connected operation. Finally, the results from the full-connected layer of each segment in the input time sequence are put into the softmax classifier together to get a single most likely sleep stage. On a public dataset called ISRUC-Sleep, the average accuracy of our proposed method is 92.2%. Moreover, it yields an accuracy of 90%, 86%, 93%, 97%, and 90% for stage W, stage N1, stage N2, stage N3, and stage REM, respectively. Comparative analysis of performance suggests that the proposed method is better, as opposed to that of several state-of-the-art ones. The sleep stage classification methods based on CNN and the fine-grained segments really improve a key step in the study of sleep disorders and expedite sleep research.


1997 ◽  
Vol 36 (04/05) ◽  
pp. 41-46
Author(s):  
A. Kjaer ◽  
W. Jensen ◽  
T. Dyrby ◽  
L. Andreasen ◽  
J. Andersen ◽  
...  

Abstract.A new method for sleep-stage classification using a causal probabilistic network as automatic classifier has been implemented and validated. The system uses features from the primary sleep signals from the brain (EEG) and the eyes (AOG) as input. From the EEG, features are derived containing spectral information which is used to classify power in the classical spectral bands, sleep spindles and K-complexes. From AOG, information on rapid eye movements is derived. Features are extracted every 2 seconds. The CPN-based sleep classifier was implemented using the HUGIN system, an application tool to handle causal probabilistic networks. The results obtained using different training approaches show agreements ranging from 68.7 to 70.7% between the system and the two experts when a pooled agreement is computed over the six subjects. As a comparison, the interrater agreement between the two experts was found to be 71.4%, measured also over the six subjects.


2020 ◽  
Vol 10 (5) ◽  
pp. 1797 ◽  
Author(s):  
Mera Kartika Delimayanti ◽  
Bedy Purnama ◽  
Ngoc Giang Nguyen ◽  
Mohammad Reza Faisal ◽  
Kunti Robiatul Mahmudah ◽  
...  

Manual classification of sleep stage is a time-consuming but necessary step in the diagnosis and treatment of sleep disorders, and its automation has been an area of active study. The previous works have shown that low dimensional fast Fourier transform (FFT) features and many machine learning algorithms have been applied. In this paper, we demonstrate utilization of features extracted from EEG signals via FFT to improve the performance of automated sleep stage classification through machine learning methods. Unlike previous works using FFT, we incorporated thousands of FFT features in order to classify the sleep stages into 2–6 classes. Using the expanded version of Sleep-EDF dataset with 61 recordings, our method outperformed other state-of-the art methods. This result indicates that high dimensional FFT features in combination with a simple feature selection is effective for the improvement of automated sleep stage classification.


2021 ◽  
Vol 2 (4) ◽  
Author(s):  
Sarun Paisarnsrisomsuk ◽  
Carolina Ruiz ◽  
Sergio A. Alvarez

AbstractDeep neural networks can provide accurate automated classification of human sleep signals into sleep stages that enables more effective diagnosis and treatment of sleep disorders. We develop a deep convolutional neural network (CNN) that attains state-of-the-art sleep stage classification performance on input data consisting of human sleep EEG and EOG signals. Nested cross-validation is used for optimal model selection and reliable estimation of out-of-sample classification performance. The resulting network attains a classification accuracy of $$84.50 \pm 0.13\%$$ 84.50 ± 0.13 % ; its performance exceeds human expert inter-scorer agreement, even on single-channel EEG input data, therefore providing more objective and consistent labeling than human experts demonstrate as a group. We focus on analyzing the learned internal data representations of our network, with the aim of understanding the development of class differentiation ability across the layers of processing units, as a function of layer depth. We approach this problem visually, using t-Stochastic Neighbor Embedding (t-SNE), and propose a pooling variant of Centered Kernel Alignment (CKA) that provides an objective quantitative measure of the development of sleep stage specialization and differentiation with layer depth. The results reveal a monotonic progression of both of these sleep stage modeling abilities as layer depth increases.


2021 ◽  
Author(s):  
R. de Goederen ◽  
S. Pu ◽  
M. Silos Viu ◽  
D. Doan ◽  
S. Overeem ◽  
...  

2021 ◽  
Vol 11 (4) ◽  
pp. 456
Author(s):  
Wenpeng Neng ◽  
Jun Lu ◽  
Lei Xu

In the inference process of existing deep learning models, it is usually necessary to process the input data level-wise, and impose a corresponding relational inductive bias on each level. This kind of relational inductive bias determines the theoretical performance upper limit of the deep learning method. In the field of sleep stage classification, only a single relational inductive bias is adopted at the same level in the mainstream methods based on deep learning. This will make the feature extraction method of deep learning incomplete and limit the performance of the method. In view of the above problems, a novel deep learning model based on hybrid relational inductive biases is proposed in this paper. It is called CCRRSleepNet. The model divides the single channel Electroencephalogram (EEG) data into three levels: frame, epoch, and sequence. It applies hybrid relational inductive biases from many aspects based on three levels. Meanwhile, multiscale atrous convolution block (MSACB) is adopted in CCRRSleepNet to learn the features of different attributes. However, in practice, the actual performance of the deep learning model depends on the nonrelational inductive biases, so a variety of matching nonrelational inductive biases are adopted in this paper to optimize CCRRSleepNet. The CCRRSleepNet is tested on the Fpz-Cz and Pz-Oz channel data of the Sleep-EDF dataset. The experimental results show that the method proposed in this paper is superior to many existing methods.


Sign in / Sign up

Export Citation Format

Share Document