CHPs and EHPs Effectiveness Evaluation in a Residential Multi-Carrier Energy Hub

Author(s):  
Atefeh-sadat Mirhedayati ◽  
Hossein Shahinzadeh ◽  
Hamed Nafisi ◽  
Gevork B. Gharehpetian ◽  
Mohamed Benbouzid ◽  
...  
2020 ◽  
Vol 12 (20) ◽  
pp. 8320
Author(s):  
Mohammad Hemmati ◽  
Mehdi Abapour ◽  
Behnam Mohammadi-Ivatloo ◽  
Amjad Anvari-Moghaddam

Coordinated multi-carrier energy systems with natural gas and electricity energies provide specific opportunities to improve energy efficiency and flexibility of the energy supply. The interdependency of electricity and natural gas networks faces multiple challenges from power and gas flow in corresponding feeders and pipes and connection points between two infrastructures’ points of view. However, the energy hub concepts as the fundamental concept of multi-carrier energy systems with multiple conversion, storage, and generation facilities can be considered as a connection point between electricity and gas grids. Hence, this paper proposes an optimal operation of coordinated gas and electricity distribution networks by considering interconnected energy hubs. The proposed energy hub is equipped with combined heat and power units, a boiler, battery energy storage, a heat pump, and a gas-fired unit to meet the heating and electrical load demands. The proposed model is formulated as a two-stage scenario-based stochastic model aiming to minimize total operational cost considering wind energy, electrical load, and real-time power price uncertainties. The proposed integrated energy system can participate in real-time and day-ahead power markets, as well as the gas market, to purchase its required energy. The AC-power flow and Weymouth equation are extended to describe power and gas flow in feeders and gas pipelines, respectively. Therefore, a realistic model for the integrated electricity and gas grids considering coupling constraints is satisfied. The proposed model is tested on the integrated energy system and consists of a 33-bus electrical network and a 6-node gas grid with multiple interconnected energy hubs, where the numerical results reveal the effectiveness of the proposed model.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1020 ◽  
Author(s):  
Mohammad Jooshaki ◽  
Ali Abbaspour ◽  
Mahmud Fotuhi-Firuzabad ◽  
Moein Moeini-Aghtaie ◽  
Matti Lehtonen

This paper focuses on expansion co-planning studies of natural gas and electricity distribution systems. The aim is to develop a mixed-integer linear programming (MILP) model for such problems to guarantee the finite convergence to optimality. To this end, at first the interconnection of electricity and natural gas networks at demand nodes is modelled by the concept of energy hub (EH). Then, mathematical model of expansion studies associated with the natural gas, electricity and EHs are extracted. The optimization models of these three expansion studies incorporate investment and operation costs. Based on these separate planning problems, which are all in the form of mixed-integer nonlinear programming (MINLP), joint expansion model of multi-carrier energy distribution system is attained and linearized to form a MILP optimization formulation. The presented optimization framework is illustratively applied to an energy distribution network and the results are discussed.


2018 ◽  
Vol 30 (2) ◽  
pp. 341-362 ◽  
Author(s):  
Narges Daryani ◽  
Sajjad Tohidi

The concept of energy hub as the interface in multi-carrier energy systems has been introduced recently. This concept motivates the researchers to concentrate on multi-carrier energy systems with the purpose of achieving more efficient performance. Multi-carrier energy systems as the upcoming energy providing systems should economically operate in comparison with conventional decoupled energy systems. Economic dispatch of a multi-carrier energy system including the combined electrical-gas network with distributed resources is studied in this paper. Applying the mentioned problem to real systems leads to a large-scale nonlinear problem which should be optimized by using the optimization techniques. In this paper, adaptive group search optimization algorithm is utilized to solve the multi-carrier economic dispatch problem. The decomposing solution is implemented in order to facilitate the optimizing procedure. Additionally, the proposed method is applied to an 11-hub test system and the obtained results are analysed. The efficiency of the proposed approach is then evaluated.


Sign in / Sign up

Export Citation Format

Share Document