scholarly journals Multistage Expansion Co-Planning of Integrated Natural Gas and Electricity Distribution Systems

Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1020 ◽  
Author(s):  
Mohammad Jooshaki ◽  
Ali Abbaspour ◽  
Mahmud Fotuhi-Firuzabad ◽  
Moein Moeini-Aghtaie ◽  
Matti Lehtonen

This paper focuses on expansion co-planning studies of natural gas and electricity distribution systems. The aim is to develop a mixed-integer linear programming (MILP) model for such problems to guarantee the finite convergence to optimality. To this end, at first the interconnection of electricity and natural gas networks at demand nodes is modelled by the concept of energy hub (EH). Then, mathematical model of expansion studies associated with the natural gas, electricity and EHs are extracted. The optimization models of these three expansion studies incorporate investment and operation costs. Based on these separate planning problems, which are all in the form of mixed-integer nonlinear programming (MINLP), joint expansion model of multi-carrier energy distribution system is attained and linearized to form a MILP optimization formulation. The presented optimization framework is illustratively applied to an energy distribution network and the results are discussed.

2014 ◽  
Vol 29 (spe) ◽  
pp. 31-40 ◽  
Author(s):  
Ana Paula Paes dos Santos ◽  
José Ricardo Santos de Souza ◽  
Everaldo Barreiros de Souza ◽  
Alexandre de Melo Casseb do Carmo ◽  
Wanda Maria do Nascimento Ribeiro

Operational records of power outages of the electric energy distribution systems in eastern Amazonia presented a large number of events attributed to lightning strikes, during the 2006 to 2009 period. The regional electricity concessionary data were compared to actual lightning observations made by SIPAM's LDN system, over two areas where operational sub systems of transmission lines are installed. Statistical relations were drawn between the monthly lightning occurrence density and the number of power outages of the electric systems for both areas studied. The results showed that, although with some delays between these variables peaks, the number of power disruptions has a tendency to follow the behavior of the lightning occurrence densities variations. The numerical correlations were positive and may be useful to the transmission lines maintenance crews at least for the Belém-Castanhal electricity distribution sub system. Evidence was found, that the SST's over certain areas of the Pacific and Atlantic Oceans, influence convection over the area of interest, and may help to prognosticate the periods of intense electric storms, requiring repair readiness for the regional electric systems.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3399 ◽  
Author(s):  
Marco Cruz ◽  
Desta Fitiwi ◽  
Sérgio Santos ◽  
Sílvio Mariano ◽  
João Catalão

Electrical distribution system operators (DSOs) are facing an increasing number of challenges, largely as a result of the growing integration of distributed energy resources (DERs), such as photovoltaic (PV) and wind power. Amid global climate change and other energy-related concerns, the transformation of electrical distribution systems (EDSs) will most likely go ahead by modernizing distribution grids so that more DERs can be accommodated. Therefore, new operational strategies that aim to increase the flexibility of EDSs must be thought of and developed. This action is indispensable so that EDSs can seamlessly accommodate large amounts of intermittent renewable power. One plausible strategy that is worth considering is operating distribution systems in a meshed topology. The aim of this work is, therefore, related to the prospects of gradually adopting such a strategy. The analysis includes the additional level of flexibility that can be provided by operating distribution grids in a meshed manner, and the utilization level of variable renewable power. The distribution operational problem is formulated as a mixed integer linear programming approach in a stochastic framework. Numerical results reveal the multi-faceted benefits of operating distribution grids in a meshed manner. Such an operation scheme adds considerable flexibility to the system and leads to a more efficient utilization of variable renewable energy source (RES)-based distributed generation.


2020 ◽  
Vol 12 (15) ◽  
pp. 6234 ◽  
Author(s):  
Sohail Sarwar ◽  
Hazlie Mokhlis ◽  
Mohamadariff Othman ◽  
Munir Azam Muhammad ◽  
J. A. Laghari ◽  
...  

In recent years significant changes in climate have pivoted the distribution system towards renewable energy, particularly through distributed generators (DGs). Although DGs offer many benefits to the distribution system, their integration affects the stability of the system, which could lead to blackout when the grid is disconnected. The system frequency will drop drastically if DG generation capacity is less than the total load demand in the network. In order to sustain the system stability, under-frequency load shedding (UFLS) is inevitable. The common approach of load shedding sheds random loads until the system’s frequency is recovered. Random and sequential selection results in excessive load shedding, which in turn causes frequency overshoot. In this regard, this paper proposes an efficient load shedding technique for islanded distribution systems. This technique utilizes a voltage stability index to rank the unstable loads for load shedding. In the proposed method, the power imbalance is computed using the swing equation incorporating frequency value. Mixed integer linear programming (MILP) optimization produces optimal load shedding strategy based on the priority of the loads (i.e., non-critical, semi-critical, and critical) and the load ranking from the voltage stability index of loads. The effectiveness of the proposed scheme is tested on two test systems, i.e., a 28-bus system that is a part of the Malaysian distribution network and the IEEE 69-bus system, using PSCAD/EMTDC. Results obtained prove the effectiveness of the proposed technique in quickly stabilizing the system’s frequency without frequency overshoot by disconnecting unstable non-critical loads on priority. Furthermore, results show that the proposed technique is superior to other adaptive techniques because it increases the sustainability by reducing the load shed amount and avoiding overshoot in system frequency.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1441
Author(s):  
Saeid Esmaeili ◽  
Amjad Anvari-Moghaddam ◽  
Erfan Azimi ◽  
Alireza Nateghi ◽  
João P. S. Catalão

A bi-level operation scheduling of distribution system operator (DSO) and multi-microgrids (MMGs) considering both the wholesale market and retail market is presented in this paper. To this end, the upper-level optimization problem minimizes the total costs from DSO’s point of view, while the profits of microgrids (MGs) are maximized in the lower-level optimization problem. Besides, a scenario-based stochastic programming framework using the heuristic moment matching (HMM) method is developed to tackle the uncertain nature of the problem. In this regard, the HMM technique is employed to model the scenario matrix with a reduced number of scenarios, which is effectively suitable to achieve the correlations among uncertainties. In order to solve the proposed non-linear bi-level model, Karush–Kuhn–Tucker (KKT) optimality conditions and linearization techniques are employed to transform the bi-level problem into a single-level mixed-integer linear programming (MILP) optimization problem. The effectiveness of the proposed model is demonstrated on a real-test MMG system.


Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1884 ◽  
Author(s):  
Saeid Esmaeili ◽  
Amjad Anvari-Moghaddam ◽  
Shahram Jadid ◽  
Josep Guerrero

Due to the recent developments in the practical implementation of remotely controlled switches (RCSs) in the smart distribution system infrastructure, distribution system operators face operational challenges in the hourly reconfigurable environment. This paper develops a stochastic Model Predictive Control (MPC) framework for operational scheduling of distribution systems with dynamic and adaptive hourly reconfiguration. The effect of coordinated integration of energy storage systems and demand response programs through hourly reconfiguration on the total costs (including cost of total loss, switching cost, cost of bilateral contract with power generation owners and responsive loads, and cost of exchanging power with the wholesale market) is investigated. A novel Switching Index (SI) based on the RCS ages and critical points in the network along with the maximum number of switching actions is introduced. Due to nonlinear nature of the problem and several existing binary variables, it is basically considered as a Mixed Integer Non-Linear Programming (MINLP) problem, which is transformed into a Mixed Integer Linear Programming (MILP) problem. The satisfactory performance of the proposed model is demonstrated through its application on a modified IEEE 33-bus distribution system.


Author(s):  
A. M. Klyun ◽  
G. M. Kogut ◽  
M. O. Karpash ◽  
О.М. Karpash

The formation of the modern Ukrainian natural gas market is accompanied by profound transformations of the national gas infrastructure: the creation and operation of new market operators, the redistribution of infrastructure facilities, the development and implementation of new requirements for the effective functioning of the entire system. At the same time, this requires from all parties a verified and balances strategy for the optimal implementation of all the obligations that Ukraine has undertaken to fully implement the requirements of the EU Third Energy Package, which aims to create an effective natural gas market based on the principles of free competition, proper consumer protection and security of supply. Despite the fact that the capacity of the Ukrainian gas transmission system and gas storages is one of the largest in Europe, the unbanding process has caused a number of threats in the area of regulatory support for production activities, requiring the consolidation of specialists' efforts to form optimal solutions to the problems that have arisen. In addition, the lengthy process of reforming and reorganizing the Ukrainian gas distribution system has led to a situation where the work of a natural gas distribution operator is facing a risk of imbalance in terms of inefficient standardization of the main areas of operation to meet the EU legislation requirements implemented in Ukraine. Therefore, to develop basic directions for the future work of gas infrastructure operators, it is necessary to take into account the acting capabilities of existing system for transportation, underground storage and gas distribution (taking into account the significant number of standardized indicators defined by the existing normative documents of the former USSR) and in accordance with the trends in the development of the European gas infrastructure introduce economically and technically feasible measures to standardize performance activities. Such works have to be incorporated into integrated research programs, during which regional and international trends are to be taken into account and adapted, the results of which will be the basis for future roadmaps and programs for the development of natural gas supply and distribution systems.


2020 ◽  
Vol 8 (5) ◽  
pp. 1757-1759

The World is changing very fast. With the advancement in technology, the needs and demands for various resources is increasing too. Earlier, when the technology was not that advanced. We, Humans, never thought about saving resources and never thought about efficiency, as everything was abundant. However, with this fast growing world and increasing demands, Scientists have started worrying about the Sustainable Development. The pace at which all these resources are being used, soon they will be fully depleted. Already the need for saving the resources like Petroleum and Natural gas has been understood and alternate resources are like electricity are used to power the devices dependent on Petroleum and Natural Gas. The main thing is that we are not realizing the fact that shifting to some other resource like Electricity and ultimately getting dependent on it will endanger that resource too. Today, Electricity is used as a major resource in our day-to-day lives. Electricity is powering every machine used by us daily. From Powering Fan, Ac, TV, Refrigerator to powering microwave, electric chimney, Induction Plate, and even Vehicles. We are overusing Electricity so much that there is a need to reduce its overuse. Otherwise, the day is not far when Scientists will have to start looking for some other alternate resource also. Being renewable resource, it is cheaper and easily available at this moment but soon the situations might change. In today’s Electricity Distribution System, there are many flaws. There is no measure for reducing the overuse, no measure for people not paying their bill, no measure for people who secretly steal the electricity. All this can be solved by using a Prepaid System that will enforce customers to pay before use, so no defaulters


Sign in / Sign up

Export Citation Format

Share Document