A new control for modular multilevel converters and their use as DC circuit breaker

Author(s):  
M. Jimenez Carrizosa ◽  
A. Arzande ◽  
M. Vasic ◽  
P. Alou ◽  
J.C. Vannier
Author(s):  
Yuqi Pang ◽  
Gang Ma ◽  
Xiaotian Xu ◽  
Xunyu Liu ◽  
Xinyuan Zhang

Background: Fast and reliable fault detection methods are the main technical challenges faced by photovoltaic grid-connected systems through modular multilevel converters (MMC) during the development. Objective: Existing fault detection methods have many problems, such as the inability of non-linear elements to form accurate analytical expressions, the difficulty of setting protection thresholds and the long detection time. Method: Aiming at the problems above, this paper proposes a rapid fault detection method for photovoltaic grid-connected systems based on Recurrent Neural Network (RNN). Results: The phase-to-mode transformation is used to extract the fault feature quantity to get the RNN input data. The hidden layer unit of the RNN is trained through a large amount of simulation data, and the opening instruction is given to the DC circuit breaker. Conclusion: The simulation verification results show that the proposed fault detection method has the advantage of faster detection speed without difficulties in setting and complicated calculation.


2012 ◽  
Vol E95.B (6) ◽  
pp. 1990-1996
Author(s):  
Seiya ABE ◽  
Sihun YANG ◽  
Masahito SHOYAMA ◽  
Tamotsu NINOMIYA ◽  
Akira MATSUMOTO ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1653
Author(s):  
Ioan-Cătălin Damian ◽  
Mircea Eremia ◽  
Lucian Toma

The concept of high-voltage DC transmission using a multiterminal configuration is presently a central topic of research and investment due to rekindled interest in renewable energy resource integration. Moreover, great attention is given to fault analysis, which leads to the necessity of developing proper tools that enable proficient dynamic simulations. This paper leverages models and control system design techniques and demonstrates their appropriateness for scenarios in which faults are applied. Furthermore, this paper relies on full-bridge submodule topologies in order to underline the increase in resilience that such a configuration brings to the multiterminal DC network, after an unexpected disturbance. Therefore, strong focus is given to fault response, considering that converters use a full-bridge topology and that overhead power lines connect the terminals.


Sign in / Sign up

Export Citation Format

Share Document